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ABSTRACT
This report summarizes the results obtained during the Contract No. I' 19628-89-k-0032
entitled "Advanced concepts in distortion-invariant phase-only filter design.®  This
research focused on improving and evaluating the techniques for designing phasc-only

and binary phase-only filters.

This report summarizes our contributions in the following areas.

e Fast algorithms for designing phase-only and binary phase-only filters.

e Designing phase-only and binary phase-only synthetic discriminant function

filters.

e Characterizing and improving the correlation peak sharpness of various

filters.

e Use of 4 phases such as in complex ternary matched filters.

e Trading off various performance measures such as the signal-to-noise ratio

and correlation peak sharpness.
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1. INTRODUCTION

1.1 Motivation
Phasc-only filters (POI's) and binary phasc-only filters (BPOFs) are extrenely attractive
in the sense that they provide high Horner efficiencies and are more convenient for
implementation on available spatial light modulators (SLMs).  However, several
important issues must be addressed in designing POFs and BPOW<  These jssyes
include: noise sensitivity of the filters, distortion tolerance, efficient algorithms for filter
design, resulting correlation peak sharpness, cffect of detector noise and trade-offs
between various performance measures. We have addressed many of these issues during
this research effort and made many significant contributions. This report suminarizes
these results.
1.2 Research Contributions
Following important results were established as part of this research cffort.  More
details can be found in subsequent chapters and appendices.

e We have introduced new, efficient algorithms for designing phase-only filters

(POFs) and binary phase-only filters (BPOFs).

¢ We have advanced new algorithms for designing phase-only and binary
phase—only_"distoi}jon-invariant synthetic discriminant function (SDI) filter

algorithms:

e We introduced & new performance measure called peak-to-correlation energy

Le e
¢ .

: (PCE)_‘tQ'Chgra‘(‘t?:ﬁze the sharpness of correlation peaks.
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e We derived alzorithms to design POFs, BPOFs and complex ternary

matched filters (CTAMES) to maximize PCIi, the peak sharpness measure.

o We proposed fractional power filters (I'PIs) to illustrate the trade-offs

aong various performance meesures in correlation filter design.

o We extended earlier work of optimum-SNR {ilter design to include colored

input noise.

e We included the role of detector noise in filter design and showed that it

leads to filter saturation.

e We proposed mufti-eriteria optimal binary amplitude phase-only filters
capable of providing optimal trade-offs among various measures.

1.3 ()verviéw of the Report

The rest of this report is organized as follows. Chapter 2 provides a brief background
on classical matched filters, phasc-only filters and binary phase-only filters. Chapter 3
summarizes the results of the fast, efficient algorithms we derived for the design of
POFs and BPOFs.  Chapter 4 introduces the concept of complex ternary matched
filters. Chapter 5 diseusses the results of extending phasc-only and binary phase-only
concepts to synthetie diseriminant functions. The effects of colored input noise as well
as detector noise are considered in Chapter 6. The new peak sharpness measure and its
role in filter design are discussed in Chapter 7. An optimum method for trading off

these measures i< discussed in Chapter 8. The last chapter provides our conelusions.




This report also includes various appendices which provide more details since each

chapter provides only the basic results.




2. BACKGROUND
2.1 Classical Matched Filters
Optical correlator has been the mainstay of optical pattern recognition for many years.
In the classical matched filter (CMF), the filter function H(u,v) placed in the frequency

plane of a VanderLugt correlator! is given by
H(u,v) = S*(u,v) (2.1)

where S(u,v) is the two-dimensional Fourier transform of the reference image s(z,y) and
the superscript asterisk indicates the complex conjugate. It is well known? that the

CMF yields the maximum output signal-to-noise ratio (SNR). The output SNR is

defined as

A |E { (0,0)}?
SNE = Var { ¢(0,0)} ’ 2.2)

where E{-} and Var {-} denote the expected value and variance and ¢(0,0) denotes the
correlation output at the origin. The underlying assumption is that the correlation

peak is at the origin.

The classical matched filter has three significant drawbacks.
e The light throughput eff'lciency3 (known as the Horner efficiency) is usually

small for CMFs since the filter transmittance is less than one at many

spatial frequencies.

e Since H(u,v) in eq. (2.1) is complex-valued, it cannot be easily implemented

on available devices such as magneto-optic spatial light modulator.
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o The CMIT is extremely sensitive to distortions in the input scene.

Several remedies have been proposed to alleviate these problems. These include: phase-
only filters® (POI's) to iinprove Horner efficiency, binary phase-only filters® (BPOI's) to
allow use of binary spatial light modulators and synthetic diseriminant fnetions’
(SDI's) to improve distortion-invariance.

2.2 Phase-only Filters

To overcome the licht efficiency problems of CMFs, Horner and Gianino” suceested the

use of POF.
Hpoy {wv) = 5*(u,0) /| S(u,0)] (2.3)

Here the filter magnitude is 1 at all spatial frequencies and thus the light throughput
efficiency is very high.  Designing the filter based on only phase (and not the
magnitude) of the ourier transform (1) of the input is justified on the basis that
earlier experiments by Oppenheim and Lim® showed that the FT phase appeared Lo be

more important than the T magnitude in image reconstruction.

One of the problems with the filter in eq. (2.3) is that it is all-pass, i.e., it has unit
transmittance at all frequencies. Thus there is no mechanism to control how much of
the input noise gets through the filter. In a previous effort, Vijaya IKumar and Bahri®
suggested the use of a region of support 2 along with the PO, The set R contains the
spatial frequencies that are not set to zero. The combination of the POIY with I? is
termed as the optimal phase-only filter (OPOIY) and is given below.

””)[,(u,l') for(va)y € I?

I, {va) = {
()n)l'( ) 0 for(ua) ¢ I?
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Vijava Wumar and Bahrl” suggested an algorithm for determining 2 so that the
resulting output SNR ix maximized. This is based on the following velutionship between

SNR and the region of support f2.

‘/ /11(11,1') Slue) z[u(/('l:
SNIR(R) = —

// 1)71(“7?,) ll](l[.'l;’)“z ([U([I‘

[ / / | S(ue)] dede]
JIe
//R l’n(u.?') dudi

where [)n(”.l') is the speetral density of the input noise. When the input noise ix white,

P (ua) o Ny and the output SNR can be approximated as follows.

[//IS(:L;U)[ dudo)*
R
N / / du dv
0k

1 9
[// [S(w,v)] dudv)”
IVOAR JR

1

N Do ST (2.6)

0" R ker

SNI(R) =

where Ay, is the area of region I and we have used discretization for approximation. [t
is easy Lo see from eq. (2.6) that for a fixed Ay we must include the A4, frequencies

with the highest i.,\'k| values in region 2. The optimnm value for “‘I can be determined

?

only by an exhaustive search.




2.3 Binary Phase-Only Filters

While POFs improve Iorner efficiency, they do not lend themselves for implementation
on some currently available spatial light modulators such as the magneto-optic SLMs
(MOSLMs). For example, MOSLMs can accommodate two phase levels (usually 0 and =
radians) and perhaps two magnitude levels (0 and 1). Several methods have been
suggested for determining a binary phase-only filter (BPOT') for implementation on such

devices. These can be summarized as follows.
Hppop(u,v) = Sgn { Re [ S(u,) ] } (2.7)

where 0 < 8 < =/2 is known as the threshold line angle, Re[-] denotes the real part

and Sgn {-} is defined as follows.

+1 if x>0

Sgn {2} = { (2.8)

—1 ifz < O
Several special cases of the BPOF in eq. (2.7) are of interest. When g = 0, the BPOF is
obtained by binarizing the real part of S(u,v) and when g = /2, the BPOF is obtained
by binarizing the imaginary part. When 8 = =/4, we binarize the sum of the real part
and the imaginary part of S(u,v). While the BPOF in eq. (2.7) is certainly convenient
for implementation on an MOSLM, it is also an all-pass filter and thus has no noise

rejection capability.

Vijaya Kumar and Bahril® suggested the use of a region of support R along with the
conventional BPOFs. This leads to a filter with three transmittance levels (-1, O and
+1) rather than just two levels. Kast et al.!! have recently shown that MOSLMs can be

made to operate in a 3-level mode. Filters using these 3 levels of transmittance are also
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known as ternary-phase amplitude filters!® (TPAFs).

Vijava Kumar and BahrilC suggested an algorithm for determining IR to maximize the
output SNR when the input noise is white. The algorithm is similar to the one
discussed in Scction 2.2 except for one difference.  The difference is that 4, the
threshold line angle is needed in BPOF design. There does not appear to be a closed
form expression for this angle. However, in most simulation studies, g == 0 (real-part
binarization) appears to yicld the best output SNR.

2.4 Synthetic Discriminant Functions

The CMF outputs are very sensitive to input image distortions. To improve this
sensitivity, Hester and Casasent” suggested the use of synthetic diseriminant functions
(SDF's). In SDFs, the filter is constructed from a linear combination of a set of training
images.  The weights in this linear combination are chosen so that the correlation
outputs take on prespecified values (c.g., large values when the input is from a desired
class and small values when it is not). To quantify vth'ls, let s (z,9), - -+, sN(x,y)
denote the N training images. Then the filter I(u,v) is given as S*(w.v) where the

composite image s(z,y) is given as the linear combination of the N training images.
N

s(ay) = Z a; s (z,y) (2.9)

=1

where the coefficients {al, oy = vy aN} are chosen to satisfy the following constraints

on the correlation outputs.

// s(zy) s(ay) dedy = ¢, i=1,2, -+, N (2.10)
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where e values are prespecified. By substituting «q. (2.9) in (2.10), we get N linear

o

cquations in N unknown. We ean thus find s{e.y) and the SDI filter [{(u).

Several variants of SDEs have been proposed over the last 10 vears. Towever, most of
these  vield  fully-complere filter functions  and  suffer from light  efficieney and

.

inplementation problems. Recently, Jared and Pnnist? proposed a relaxation aleoriihm
for obtaining phase-only and binary phase-only SDIFs. In this report. we report a new

method that we eall the successive foreing algorithm.
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3. EFFICIENT ALGORITHMS FOR POF AND BPOF DICSIGN
3.1 Basic Idea

We discussed in Section 2.2 an algorithm for determining the optimal region of support
for POIY design and in Section 2.3 an a'zorithm for determining the optimal region of
support for the BPOIT design. Those algorithms are alveady efficient. For example,

when dealing with a 32,32 filter array with 1021 pixels. there are a total of

9 1024 10300

~ possible choices for R, Out of thes~, one I is the best. In Section 2.2,
we stated that when the input noise is white, the optimal I?* (i.c., the region of support

leading to maximum SNR) must be o1 the following form.
R* = {(uw) : |S(u2)| > T} (3.1)

where 7"1s an unknown threshold. This optimal threshold 7" needs to be determined by

an exhaustive search.

Since a 32X 32 filter array has 1024 values in it, we need at most 1024 thresholds.
Then IR* can be determined by trying out all 1024 thresholds, computing the resulting
SNRs and then choosing the threshold that leads to the highest SNR. Thus we need to
test only 1024 choices for R instead of 10390 choices. We have made additional

improvements to speed up the algorithms.

We have proved' that if two or more frequencies of the Fourier transforms of the
image have equal magnitudes, either all of them or none of them are included in the
region of support for the optimal POF. A similar theorem can be stated for BPOFs
also. Proofs for this can be found in our Applied Optics vreprint included as Appendix A

of this report.
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This theorem provides an even more efficient way of finding the optimal R* for POFs
and BPOFs. For example, suppose we quantize the |S(u,v)| values to 4 bits. That
means that there are only 16 distinct magnitudes in |S(u,v)| after quantization. From
the above theorem only 16 thresholds need to be verified. This is much faster than the
original algorithm. Of course, the quantization in |S(u,v)| leads to sub-optimal filters.
We suspect that this suboptimality will be insignificant unless the quantization is very
coarse. An efficient algorithm based on this quantization idea is presented in Appendix
A.

3.2 Numerical Results

To understand the effectiveness of this algorithm, we tested it on the 32X 32 pixel gray-
level tank image shown in Fig. 3.1. To compute the filters, we zero-padded this image

and performed 64X 64 sized discrete Fourier transforms using the FFT algorithm.

[Mig. 3.1. The 32X 32 tank image used in the numerical experiments.
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First, we compared the efficiencies of the original algorithm and this new algorithim for
designing the optimal IR* for POFs. Using the most efficient sorting algorithin, the
original algorithm took 10.15 scconds of CPU time on our Vax 11/750 whereas the new
algorithm (using 8 bit quantization) took only 0.13 seconds on the same machine. This
is a speed-up by a factor of 78. When the FFT size was increased to 128X 128, the
speed-up factor improved to 130 for the same 8-bit quantization. The price paid for
this speed improvement is a small decrease in the output SNR. The old algorithm
vielded an output SNR of 18.834585 dB whereas the new one yielded 18.834409 dB.

This difference is insignificant.

When the new algorithm was applied to find the optimal regions of support for BPOFs,
the CPU times decreased from 1585 seconds (for all 19 ROSs for the 19 choices of g) to
16.8 seconds for a speed-up factor of 95. When FFT sizes were increased to 128 X128,
this reduction factor went to 980. The SNR loss due to quantization was no worse than
0.00046 dB. These numerical results conclusively prove the superiority of this

algorithm.
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4. COMPLEX TERNARY MATCHED FILTIERS
4.1 Motivation
The CNEs vetain full coraplex information about the image Fourier transforms wherens
the POs and BPOPFs discard the magnitude information.  In fact, BPOPs retain only
one bit of information (-1 or +1) at cach spatial frequeney. It is important to find out
if we can improve the performance of the filters by allowing more bits of representation

in the filter domain.

In o previous effort. Vijava Kumar and Connelly! analyzed the effeet on the output

SNR of quantizing the phase of a POl to N levels. They showed that when N = 2 (as

in BPO) the SNR decreased by about 4 dB compared to the POIY. On the other hand,
for N > 1, this decrease in SNR < 1 dB. Thus using 4 phase-levels scems like an

interesting approach.

[n the spirit of using 1 phase levels, Dickey and Hansche!® suggested quad phasc-only
filters (QPOL's) which can be implemented using 2 MOSLMs arranged in a detour-phasc
arrangement.  In QPOI's, both devices are used in a BPOF mode and thus no noise
control is provided. Complex ternary matched filters!? (CTMFs) are designed to
provide this noise tolerance.

4.2 Basic Formulation

The CTMI® [(u,v) is defined as

Heoppwv) = Hi(uw) — 5 Hy(u,v), (4.1)

where j = V=1 and 111(1/.1') and T1,(u,v) are ternary filters, i.e.. they can take on three

levels of transmittance (-1, 0 and +1). Thus each of this can be implemented using an




MOSLM operated in a ternary mode. The possibility of zero transmittance allows us to

control the noise sensitivity.

Letting I?, and R, denote the regions of support for [Il(u,'u) and H_z(u,z,'), respectively,

we can write the following expression for the output SNR.

|/ S(u,v)H ( uv)a’udv—j// uvH(uL)dudb{“

CTMF = (4.2)

// (wv)dudv + //R P (u,v)dudv

0

-~

SNR

Using simple symmetries, we can show that SNR g Is optimized (for given R, and

R,) by selecting H (u,v) and Hy(u,v) as below.

1

n e uve—ﬂ or (u,v
{Sg { Re [S(u,v)e™ )} for (u,v) € R (4.3)

I (uw) =
0 for (u,v) ¢ R,

Sgn { Im [S(u,v e P} for (uw) € R
Hofuw) — { [S(u,v)e™ 7]} (u,v) 2 (4.4)
- 0 for (u,v) € R,
where Re [-] and Im [-] denote the real part and the imaginary part, respectively, and 8

is the threshold line angle as discussed in the case of BPOFs. Substituting (4.3) and

(4.4) in eq. (4.2), we obtain

[//| (uv|dudv+// 15 (u,v)] dudu]?

SNR oy = (4.5)

//R P (u,v) dudv +// ) dudv

A A
where Sp(u,v) and S,(u,v) denote the real part and the imaginary part, respectively, of
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[S(u,v) c—jﬁ}. For the special case of white noise P (u,v) = IV, a constant and optimal
R, and R, can be sclected to maximize SNR . by sorting Ig'R(u,v)] and |§1(u,v)|
values.

4.3 Simulation Results

We carried out our computer simulations using the 32X32 tank image shown in IMig.
3.1. Once again, FFTs of size 64X64 were used to avoid gett;ing a circular correlation
instead of a linear correlation. The image energy was normalized to 1 and has 60.26%
of its energy in the even-part (or equivalently in the real part of its FT) and 39.74% in
the odd-part (or equivalently in the imaginary part of its FT). The efficient algorithm
discussed in Section 4.2 was applied to this data. The resulting optimal regions of
support are shown in Figs. 4.1 and 4.2. In both figures, white areas represent where the
filter has nonzero transmittance and black areas represent spatial frequencies that are
completely blocked. The center of the array denotes the (0,0) frequency. Fig. 4.1 shows
the optimal region of support for Hl(u,v) and Fig. 4.2 shows the optimal region of

support for H,(u,v).




Fig. 4.1. Optimal Region of Support for Hl(u,v) in CTMI".

Fig. 14.2. Optimal Region of Support for HQ(u,v) in CTMF.
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The noise tolerance of the CTME was tested by adding zero-mean, Gaussian noise to
the input image. Resulting correlation outputs were analyzed and output SNRs were

estimated. We show in Table 4.1 the output SNRs for various filters.

Table 4.1

Output SNRS (dB) for Different Filters

Input

SNR BPOI onror
(dB) CMI” POF OPOF  (Real) (Real) QPOF  CTMF
-20 10.76 5.69 9.57 4.13 7.63 5.45 8.76
-10 20.64 14.77 19.28 12.23 17.42 14.62 18.67
0 30.60 24.73 29.02 22.07 27.24 24.59 23.63
10 10.59 34.72 38.98 32.02 37.15 34.58 38.64
20 50.58 44.72 48.92 42.00 47.27 44.57 48.63

IFrom this table, we can draw some interesting inferences. Note that using an optimal
region of support with POFs improves the output SNR by about 4.5 dB. Similarly
going from BPOF's to OBPOFs improves the output SNR by about 5 dB. We show in
the last column of Table 4.1 the output SNRs obtained from CTMFs. Note that they

are within 2 dB of the highest possible output SNRs (i.e., those achieved by the CMF).

Finally, we show in Fig. 4.3 sample correlation outputs from the CMF, the POF and
the CTMF when the input has no noise. Note that the CTMF provides a broad

correlation peak. In Fig. 4.4, we show sample correlation outputs using the same filters
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when the input is corrupted by additive noise. Note that the CTNIT outpat (like CMI°
output) is relatively unaffected by input noise whereas the POF output is degraded by
intput noise.  This noise tolerance in CTMEs is due to the optimization of output SNR
in desicning CTMIEs. More details about this can be found in the reprint in Appendix

3.




2()

Fig. 4.3 Normalized (peak value set to 1) correlation outputs when the input
image has no noise. (a) CMF output, (b) POF output and (¢) CTMI
output.




Fig. 4.4 Normalized (peak value set to 1) correlation outputs when the input
image has noise such that the input SNR is 0 dB. (a) CMF output,
(b) POF output and (¢) CTMF output.
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5. PHASE-ONLY AND BINARY PHASE-ONLY
SYNTHETIC DISCRIMINANT FUNCTIONS

5.1 Motivation

As discussed in Section 2.4, SDFs provide a method to improve the distortion tolerance
of the matched filters. Several variations of the basic SDIFF method have been suggested
over the last 10 years. These include: minimum variance SDFs!® minimum average
correlation energy (MACE) SDFs!® and Gaussian-MACE filters.? These and other
variants of SDF's improve various attributes. However, they all lead to fully complex

filters that are not amenable for implementation on devices with limited modulation.

Jared and Ennis!® were the first to propose a method to design SDF filters for
implementation on limited modulation devices. They suggested an iterative algorithm
(called the relaxation algorithm) where the weights of the linear combination are
adjusted to simultaneously meet the SDF constraints and to provide phase-only or
binary phase-only filter function. In this research effort, we have advanced a new
method that we call the successive forcing algorithm?! (SFA) capable of designing
limited-modulation SDF's.

5.2 Successive Forcing Algorithm

This algorithm is most easily explained using the vector notation. Let us discretize the
N training images to get d-dimensional column vectors $1) 89, +..,85 Let X bea
dX N matrix with its ¢-th column given by s;. Let us denote the composite image s(z,y)

in eq. (2.9) by an equivalent vector s. Then

8 = a8 tay8,+ -+ apsy

= Xa (5.1)
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wlere a = [(11, Uiy o o vy (,1/\;] is the column vector of weights. The correlation output

constraints in eq. (2.10) can be rewritten as

wlhere ¢ = [('1, Ch * "ty c/\vll is the column vector of correlation output constraints.

The usual SDI" solution is obtained by substituting eq. (5.1) into eq. (5.2) and solving

for s as below.

scpp = X(XTX) e, (5.3)

which can be easily seen to satisfy the SDF constraint in eq. (5.2). However, the
problem with this is that it is fully complex. The successive forcing algorithm21 (SFA)
designs filters that meet the SDF constraints in eq. (5.2) while meeting the device

requirements.

Algorithm:

Step 1: Start with an arbitrary initial complex coefficient vector a.
Step 2: Determine the filter vector s from eq. (5.1).
Step 3: Force the frequency response of s to meet device constraints. For

example, if we want phase-only SDFs, we set the magnitude of the
Fourier transform of s(z,y) to one and leave the phase unchanged.
Let this be denoted by &'

Step 4: Determine the new constraints satisfied by ', i.e., ¢’ = xT .
Step 5: If the magnitudes of the components of ¢’ are close to that in ¢, stop

and exit; otherwise, replace the magnitudes in ¢’ by magnitudes in ¢
and leave the phases unchanged. This leads to ¢”.

Step 6: Find the next vector a as (XTX)_1 ¢” and go back to Step 2.

There is no proof that this method will always converge. Ilowever, our numerical

results are encouraging.




5.3 Numerical Results
To test the SIPA, we chose a 2-class problem where one class is the tank image shown in
IYig. 3.1 and the other class is the APC image in IMig. 5.1. xtensive simulations were

conducted. Tere we show some sample results.

IFig. 5.1. The 32X32 APC image used for the false class.

We used 6 training images (at 60° intervals) from the truc class (i.c., tanks) and 6
training images from the false class (i.e., APCs). In Fig. 5.2, we show the correlation
outputs (at the origin) when the phasc-only version of the conventional SDIF is
employed. There is very little separation between the curves for the true class and the
false class. In comparison, the scparation between the true class outputs and the false
class outputs for the phasc-only SDIF designed using the SIFA is much better as shown in

I'ig. 5.3.

The results in Figs. 5.2 and 5.3 show how the phasc-only SDI's work with training

images. In Fig. 5.4, we show the correlation outputs with all images when the phase-
only version of the conventional SDIY is employed and in IFig. 5.5 we show the

correlation outputs with all images when the phasc-only SDI's nsing SI'A are employed.




-

Note that the number of misclassifications is less in Fig. 5.5 compared to Fig. 5.4. To
improve further the performance of phase-only SDI's designed using SIFA, we designed
it using all 72 available trai.ning images (36 from each class). The resulting correlation
outputs show significant separation between the two classes. These basic ideas can be

extended to binary phase-only SDI's also.
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6. EFFECT OF COLORED NOISE AND DETECTOR NOISE
6.1 Background
Much of the previous research in correlation filter design was based on the assumption
of white noise being added to the input scene. This may not be appropriate in many
situations. I'or example, often the objects of interest may be in natural backgrounds
that can be modeled as sample realizations from random noise. However the spatial

spectrum is rarely constant and thus these backgrounds must be modeled as colored

noise.

Another important noise source, often ignored is the detector placed in the correlation
plane. These detectors introduce their own noise prior to any decision scheme. If this
detector noise is low or if the light coming through the filter is strong, this is not an
issuc. DBut one of the reasons for the popularity of light-efficient filters (such as POFs)
is the small amounts of light available in the output plane. Thus detector noise
becomes an important issue.

8.2 Colored Noise

When the input noise has a power spectral density Pn(u’,v), the resulting output SNR

for a filter H(u,v) can be written as

|//H(u,v)' S(u,v) dudv |?
SNR =

— )
,// P, (u,v) |H(u,v)|? dudv (6.1

For the case of a POF with region of support I2, this SNR becomes




[ / /R 1S(uyv)]| du du]?
Nerrs

In general, it is not obvious how R should be chosen to maximize SNRpy We have

SNR o1

been able to show?? that the optimal region of support R* must be of the following

form.

|S(u,v)|
P (u,v)

R* = {(uw) : T 3}, (6.3)
where T is an unknown threshold that needs to be determined. Above basic procedure
can be extended to BPOFs and CTMF's also. Details are presented in the Optics Letters

reprint attached as Appendix C.

To illustrate the advantages of using the colored noise formulation, we designed a POF
with region of support optimized for a particular "colored" noise. Here the background
was used to estimate the spectral density of the colored noise. Fig. 6.1 shows the

reference image in zero background and Fig. 6.2 shows the same image in a natural

background.
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Fig. 6.1. Segmented Reference - Fig. 6.2. Reference Image in
Image Background

The background in Fig. 6.2 was used to estimate P (u,v). This estimate is shown in
Fig. 6.3. The estimated P, _(u,v) was used with eq. (6.3) to determine the optimal region
of support. Fig. 6.4 shows the optimal ROS under white noise assumption and Fig. 6.5

shows the same using estimated P (u,v). Note the significant difference between the

two ROSs.
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Fig. 6.3. Est" » ted Power Spectral Density of the Background in Fig. 6.2.
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Fig. 6.4. Optimal Region of Fig. 6.5. Optimal Region of
Support Under White Noise Support for Estimated Colored
Assumption. Noise.

More importantly, the correlation outputs must be examined. Figs. 6.6 and 6.7 show
the correlation outputs for ROSs in Figs. 6.4 and 6.5, respectively, when the input

image was the reference in zero background. While both peaks are at correct position,




the peak from the colored noise ROS is much sharper. Iigs. 6.8 and 6.9 show the

correlation outputs when the input image was the reference in natural background in

Fig. 6.2.  The difference between the two outputs is dramatic, illustrating the

importance of colored noise ROS.

ity

VA
i

Fig. 6.6. Correlation output when the reference image in Fig. 6.1 and the ROS

in Fig. 6.4 were used.




['ig. 6.7. Correlation output when input is the image in I'ig. 6.1 and ROS is
the one in Fig. 6.5.
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I'ig. 6.8. Correlation output when input is the image in Iig. 6.2 and the ROS

is the one in Fig. 6.4.
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I¥ig. 6.9. Correlation output when input is the image in Fig. 6.2 and the ROS
is the one in Fig. 6.5.

6.3 Detector Noise

An often ignored aspect of filter design is the detector noise. If there was no detector
noise, there would be no need for a light-efficient filter such as the POF. Instead, we
can amplify the correlation output by any desired amount and carry out perfect

dotection. A reasonable model for detector noisc is that the observed output is y where
y = c(0,0)+ n,, (6.4)

where ¢(0,0) is the correlation output in the absence of noise and n is the detector
noise. We assume that n, is a random variable with mean p, and variance "dz' We

have shown that the output SNR is then given as follows.




|/ / H(u,v) S(u,e) dude |2
SN, = — (6.5)

14

o, +/ / Pn(u,w) ]H(u.v)}'3 dude

When detector noise is zero or small, SNIR, in eq. (6.5) is similar to the usual SNR

. . . 9 . . . . en .
expression and prior results still hold.  But when o, s large, maximizing SN s

equivalent to maximizing the correlation peak magnitude. Our experiments have shown
that when rrd“ is large or when the input noise is small, the optimal ROS is large
allowing much of the input light to pass. On the other hand, when input noise is large
or detector noise is weak, the optimal region of support is small thus preventing much

of the input noise. We have derived the rigorous formulae for this. The results are

included in JOSA-A reprint®® attached as Appendix D.
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7. MAXIMIZING PEAK SHARPNIISS

7.1 Motivation

While higch output SNRs are certainly needed when using correlation filters, it is also
important that the resulting correlation outputs have sharp peaks.  Such sharp peaks
cnable accurate localization of the input target and can improve the diserimination
capability of the filters. Prior to our research described in this chapter, there was
relatively little research done in designing filters to maximize the peak sharpness.
Dickeyv and Romero?! showed that the conventional phase-only filters are dually optimal

in (e sense that they maximize both output SNR and output peak sharpness.

We have proposed a new performance measure called peak-to-correlation energy (PCE).

The PCI is defined as below.

le(0,0 2
ol = <(0.0) (7.1)

// le(7, ry)l?'drz dTy

where (7, ry) is the correlation output and ¢(0,0) is its value at the origin. The

numerator in eq. (7.1) is the square of the peak value whereas the denominator yiclds
the total energy in the ccrrelation output. For sharp correlation outputs (e.g., delta
functions), the PCE is very high whereas for broad correlation outputs (e.g., constant
functions), the PCE is small. Thus designing filters to maximize PCIS can lead to filters
vielding sharp correlation output peaks.

7.2 Phase-only Filters Maximizing PCE

Using Parseval’s theorem. the PCE in eq. (7.1) can be rewritten as
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l//H(u,v) S(u,v) dudv]?
PCE = . (7.2)

// | H(u,v))* |S(u,0)]? dudv

It [(u,v) is allowed to be complex, then PCE is maximized by H(u,v) = 1/5%(uv), the
inverse filter. The inverse filter, of course, suffers from the problems of excessive noise

sensitivity.

When f{{u,v) is limited to be a phase-only filter with region of support 12, the resulting

PCE is given as follows.

( / /R 1S(u,0)| dudo]?

/ |S(u,v)|? dudv
J IR

PCE o

The region of support maximizing the PCEpy - in eq. (7.3) was shown by us to be of the

following form.
R* = {|S(uw)| < T} (7.4)

where T is an unknown threshold that must be determined by a scarch. The proof for
this is provided in the Optics Letters reprint included as Appendix [5. Note that the
regions of support for maximizing SNR and for maximizing PCE will be different.

7.3 Simulation Results

For testing the advantages of using the optimum-PCE POF, we used the 32X32 missile

[auncher test image shown in Figure 7.1.




11

Fig. 7.1. The 32X 32 missile launcher image.

As usual, FI'Ts of size 64X 64 were used. The optimum region of support for POF's

maximizing the SNR and the PCE are shown in Figs. 7.2 and 7.3, respectively.

Fig. 7.2. The optimal region of support for the POF maximizing the SNR.




Fig. 7.3. The optimal region of support for the POF maximizing the
PCE.

The region of support in Figs. 7.2 and 7.3 are very different. Obviously, the goals of
maximizing the SNR are incompatible with maximizing the peak sharpness. In the next
chapter, we will explore optimal tradeoffs between the two extremes. In Table 7.1, we
show the output SNRs and PCEs for different filters. The input SNR used was 32 dB.
Note that optimum-PCE POF provides an increase in PCE of 17 dB over the CMF and
of 7 dB over the conventional POF. Figures 7.4 to 7.7 show correlation outputs for the
4 filters. Note that the output from OPCEfPOF is the sharpest. We include in

Appendix F a reprint that shows how these ideas can be extended to BPOIY, CTMF, etec.
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Table 7.1. SNR and PCE Values for Various Filters

IFilter Type SNR (dB) PCE (dB)
CMF 68.39 16.00
POrI° 59.01 26.74
Optimal-SNR POF 66.60 13.71
Optimal-PCE POF 49.67 33.55

" "".0 \

u‘,‘ ()
NN
o

Iig. 7.4. CMF Output
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Fig. 7.5. POF Output

Fig. 7.6. Optimum-SNR POF Output




Fig. 7.7. Optimum-PCE POF Output
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8. OPTIMUM TRADE-OFF FILTERS

8.1 Motivation

We have seen in Chapter 7 that some of the desired goals in correlation filter design are
conflicting. For example, maximizing SNR leads to emphasis on low spatial frequencies
whereas maximizing PCEs leads to high-frequency emphasis. It is important to
appreciaie and understand these tradeoffs and design optimum tradeoff filters. This
will help us tailor the filter design to suit particular applications. Fpr example, if the
input image is subject to much input noise, it is necessary to optimize the SNR. On the
other hand, if the application limits the available power, more light-efficient filters are

desired.

While SNR and PCE are useful measures, there are other important measures also.
Examples include: IHorner efficiency to measure the light throughput capabilities, the
accuracy of peak location, discriminability and distortion tolerance. Not all measures
can be optimized using one filter. We will present some of the tradeoffs in this chapter.
8.2 Fractional Power Filters

We have scen already that the CMFs maximize the SNR, the inverse filter maximizes
the PCE and the POF maximizes the Horner efficiency. We have introduced®® the

following fractional power filters (FPFs) to illustrate the resulting tradeoffs.

1S(u,v)|P e~ if |S(u,v)| 5% 0

Hpplu) = { 0 if|S(u)| =0 (8.1)

where p is a real number and |S(u,v)| and 6(u,v) are the magnitude and phase,
respectively, of the Fourier transform of the reference image s(x,y). Here p = 1 leads to

the CMF, p = 0 leads to the POF and p = —1 leads to the inverse filter. We can




derive expressions for SNR, PCE and Horner efficiency in terms of p and |S(u,2)|.

These expressions can be used to display the resulting tradeoffs.

We have used the 32X32 gray level aircraft image shown in Fig. 8.1 for these
numerical experiments. This image was placed in a 64X 64 array and zero-padded prior
to performing a 64X64 I'I''I".  The resulting |S(u,v)] was used to compute SNR, PCE

and Horner efficiency as a function of p.

I"ig. 8.1. The aircraft used in the numerical experiments.

We show in Fig. 8.2 the three measures (using a dB scale) as a function of p. As
expected, the SNR peaks for p = +1 (CMF), the PCE peaks for p = —1 (inverse filter)
and the Horner efficiency peaks for p = 0 (the POF). We can also clearly see the
resulting tradeoffs. An interesting observation is that the SNR and PCE curves appear
to cross at p = 0 (the POF). Thus the POF may provide a reasonable compromise for

both PCE and SNR while providing maximum Horner efficiency.




g
ES — - sNR 7”
7] PCE
L.ngmc H
2 -1 0 1 2
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Fig. 8.2. SNR, PCE and Horner Light Efficiency (in dB) as a function of p for

the image in Fig. 8.1.
8.3 Optimal Trade-off Filters
Recently, Refregier27 has derived filters that provide optimum tradeoff among the three
measures (SNR, PCE and Horner efficiency). He showed this optimal tradeoff filter

(OTF) as given by

Hw) = o 1 S(u,v) ) (8.2)
u P(u0) + (1=p) |S(u,0)|”

where 0 <4 < 1 and the function o, () is given as follows.

z o if gl < 1/
o\ (y) = {

Y b} 83
eV iyl > 1/ (8:3)

where ¢ is the phase of y. Thus the OTF is a phase-only filter at some frequencies and
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a fully complex filter at other frequencies.

When we are interested in designing POFs with optimal tradeoff between SNR and
PCILL, we can combine the denominators of the two measures to come up with the

following compromise performance measure (CPM).

|// S(uw) H(u,v) dudv]®

CPM

(8.4)
[ [ 1) (8 (w) + (a0 duds

where ~ denotes the relative emphasis between SNR and PCLE. For v = 0, CPM is

-

identical to the SNR whereas for very large 4 values, CPM is proportional to PCE. For

the case of POFs with region of support R, the CPM is given as follows.

[ / /R 1S(u,0)] dudv]2

CPM : (8.5)

/ /R [P (wv) + ~ |S(u,0)|?] dudv

I

We have shown=® that the optimal ROS R* maximizing this CPPM is given as
: POF

follows.

RY — { (un) : S ) > T} (8.6)
P (u,v) + ~ |S(uv)}”

where T is an unknown threshold to be determined.

We used the binary boundary image shown in Fig. 8.3 for simulation. The resulting
tradeoff between SNR and PCE is shown in Fig. 8.4. Similar experiments with BPOV's

lhave also been carried out. Appendix G contains the reprint that details these




tradeoffs.

PCE (dB)

Fig. 8.3. Binary boundary image of a truck.
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Fig. 8.4. PCE vs. SNR as + is varied.




9. CONCLUSIONS

Several significant contributions have been made to the are. o it .c-only and binary
phasc-only filter design as a result of this research project. We suminarize here the
major contributions.

¢ \We showed how previous algorithms for designing optimal POFs and BPOFs

can be improved to result in a speedup of about two orders of magnitude.

e We introduced a new algorithm known as the successive forcing algorithm
(SIFA) to design limited modulation (e.g., phase-only and binary phase-only)

synthetic discriminant {function filters.

e We extended the notion of optimum-SNR POFs and BPOF's to include
colored noise in the input scene since colored noise is a better model for the

natural background in many input images.

e We designed POFs and BPOFs to maximize the output SNR when detector
noise is also present. The presence of detector noise results in the saturation

of filter magnitude.
e We introduced complex ternary matched filters (CTMFs) that can be
implemented using two ternary devices such as the magneto-optic spatial

lignt modulator (MOSLM).

e We introduced a new performance measure called peak-to-correlation energy
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(PCE) to characterize the sharpness of the correlation peak.

o We designed POFs, BPOI's and CTMF's to maximize the resulting PCle.

e We introduced fractional power filters (I'PI's) to illustrate the tradeoffs

among SNR, PCE and Iorner efficiency.

e We designed optimal tradeoff filters (OTF's) capable of providing the

optimal tradeoff among various measures.

We believe that these contributions have significantly expanded the capabilities of
phasc-only and binary phase-only filters thus making them even more attractive for

optical implementation.
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APPENDIX A

Fast algorithms for designing optical phase-only filters (POFs)
and binary phase-only filters (BPOFs)

Zouhir Bahri and B. V. K. Vijaya Kumar

Very efficient suboptimal algorithms for the design of phase-only filters and binary phase-only filters are
presented. A reduction of 2- to 3-orders of magnitude in computer time is obtained over previous algorithms.
The loss in signal-to-noise ratio is negligible (<0.001 dB).

I. introduction

Phase-only fiiters (POFs)!2 and binary phase-only
filters (BPOFs)3-7 have received much attention in
optical pattern recognition research. While earlier
work in the area of POFs and BPOF's has been more or
less adhoc, several research groups®8°® have recently
started to investigate optimal ways of designing POFs
and BPOFs. Most of these efforts have focused on
optimizing the output signal-to-noise ratio (SNR). In
addition, we have introduced®® algorithms to numeri-
cally determine the optimal POFs and BPOFs for the
detection of arbitrary reference images corrupted by
additive white noise. Both optimal POFs and optimal
BPOFs are characterized by regions of support.
When a spatial frequency is not included in the region
of support, the resulting filters have zero magnitude at
that frequency. Thus, a BPOF coupled with a region
of support is, strictly speaking, a ternary-valued (—1, 0,
and +1) filter.

Here, we provide very efficient suboptimal algo-
rithms for the design of regions of support for the
optimal POFs and BPOFs. These very efficient algo-
rithms result in an impressive reduction in CPU time
(2 to 3 orders of magnitude). This is done at the
expense of a very small loss in output SNR (<0.001 dB
for all cases we tested). This speedup in BPOF design
should allow determination of the optimal BPOFs
adaptively in real time.

The remainder of this paper is organized as follows.
In Sec. II., we provide some background material in
which we briefly summarize the earlier algorithms. In
Sec. II1., we present the new efficient suboptimal algo-
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rithm for the design of POFs. Section IV. is analogous
to Sec. I1L. except it is concerned withBPOFs. Final-
ly, Sec. V. summarizes our results.

l. Background

A. Phase-Only Filters

We have shown elsewhere® that the OPOFs have the
same phase as that of the classical matched filters.
The SNR obtainable from the OPOF's can be increased
further by introducing a region of support R. - This
region R determines the spatial frequencies for which
the OPOF is not zero. The role of this R is to suppress
the frequencies which have little signal power and a lot
of noise power and in the process to improve the SNR.
Thus, the OPOF, strictly speaking, is not a POF since
it accommodates two magnitudes (zero and one).
However, even conventional POFs have two magni-
tudes since the filters are always contained in an aper-
ture. Our earlier research has determined that the
optimal R must maximize the following SNR expres-
sion:

l ] IS¢ldf r
SNROPOF = R . (l)

[ Panar

In the above equation S(f) denotes the Fourier trans-
form (FT) of the reference image s(x) and P,(f) the
noise power spectral density. We will use 1-D nota-
tion throughout for simplicity, but all our results can
be easily extended to higher dimensions. For the case
of white noise, the denominator in Eq. (1) depends
only on the area of R and not on which exact spatial
frequencies are included in this region. Thus, for a
given size of R, we must include those spatial frequen-
cies that maximize the numerator of Eq. (1). To do
this on a digital computer, we use the discrete notation.
To accomplish this, we reorder the samples of the
signal Fourier transform as below:

sl zls@l = ... 2 1S, 2)




where d is the number of samples in the signal discrete
Fourier transform (DFT) S(k). Let K denote the
number of pixels in the region of support. By choosing
K pixels corresponding to the first K signal DFT values
in Eq. (2), we will maximize the resulting SNR for that
choice of K. The corresponding SNR is given by

K 2
[\ IS(i)i]
SNR(K) = « "‘K— .

where « is a constant that depends on the sampling
interval used (to convert integrals into summations)
and the level of the white noise present in the input
signal. We numerically evaluate SNR(K) for all possi-
ble choices of K and select the one that maximizes it.
Notice that without the sorting in Eq. (2}, for each
value of K, we must try all possible regions of support
consisting of K pixels. This is not practical even for
small K values.

(3)

B. Binary Phase-Only Filters

We have shown elsewhere® that the optimal BPOF
(OBPOF) takes the form

H(f) = Iz SgnlS,(f) cos(8*) + S {f) sin(6*)], (4)

where Ig(f) is the indicator function for region R and
where Sgn(x) is defined as
+1 ifx20

~1 otherwise

Sgn(x) = { (5)
In the above, 8* denotes the (yet to be determined)
optimal threshold line angle (TLA)* and S,(f), Si{/)
denotes the real (imaginary) part of S(f). To deter-
mine the OBPOF, we scan all values of TLA 6 (from 0
to x/2). For each 8, the R that leads to the highest
SNR is determined and the corresponding SNR is
noted. The TLA that defines the OBPOF (6*) corre-
sponds to the largest among the SNRs. To find the
optimal region of support for a given TLA, we partition
R into R, and R; defined as

R, =if € R:1S,(f) cos(8)] > IS, () sin(®)]} ©)
R, =f € R:IS,(f) cos(8)] < IS,(P) sin(8)l}. 4))
The SNR (for the TLA in question) can then be writ-

ten as
U ls,m:df]’+[] |s,mtdf]’
R, R,

P,(Hdf

R R,

SNR =

, (8)

where in the above, we assumed that R, and R; are
even symmetric.

For white noise, we can apply the same idea (in the
discrete domain) as in the OPOF case to optimize the
SNR in Eq. (8). For a given 8, we define the two
regions

P, = in:1S(n) cos(8)l > |S,(n) sin(6)}, 9

P, =in:1S.(n) cos(® < |S,(n) sin(B)]}. (10)

DN

The values[S,(n)l for n € P, and the values |S,(n)| for n
€ P, are then sorted in descending order. Hence, a
discrete approximation for Eq. (8) is

A, i K »
[\‘ IS:'I] + [\‘ ISj'I]
SNR =o' reloo 4

K, +K, (1)

where K; and K; denote the number of pixelsin P, and
P,, respectively and « is a constant that includes the
white noise level and the discretization constants.
Here, the superscript n in |S"] and |S7| refers to the nth
largest value in the corresponding array. Next, we
find that optimal values of K;,K; through a search
along the grid (i.e., we fix K and find the optimal value
of K, and repeat this process for all values of K, and
choose the best case). This will yield the OBPOF.

A subtle aspect of the above algorithm (not realized
earlier) must be pointed out. The 6 used in the BPOF
form of Eq. (4) must equal the phase of the complex
correlations response at the origin when this BPOF is
used. When the BPOF of this form, using # as the
TLA, produces the same 8 as the phase of the correla-
tion response at origin, we call such a BPOF a feasible
filter. In general, there is no guarantee that the
BPOFs defined according to Eq. (4) are feasible.
However, we have shown recently!? that when we find
the 8* yielding the best SNR among all TLAs, the
corresponding BPOF is indeed a feasible filter and is
the OBPOF we are searching for. However, the filters
maximizing the SNRs for specific # values are not
necessarily feasible. Thus, the above algorithm works
only because we scan all values of 8. Dickey et al.!!
have recently proved the optimality of the above algo-
rithm for a more general filter that they term as the
complex ternary matched filter (CTMF).

il. Efficient Suboptimal Algorithm for POF design

A. Analysis

We start the analysis of the new POF algorithm by
the following proposition concerning the optimal re-
gion of support R.

Proposition 1: If two or more frequencies of the
signal Fourier transform have equal magnitudes, ei-
ther all of them or none of them are included in the
optimal region of support.

Proof: Itissufficient to prove the above proposition
for two frequencies only. The case of three or more

ixels easily follows by deduction. Assume |S(Ko)l =
S(Ko + 1)] for some Ky = 2 (For Kg = 1, it is easy to
show that the use of the first two frequencies rather
than the first frequency by itself will double the result-
ing SNR). As always, IS(K)| are sorted as in Eq. (2).
Also, SNR(K,) denotes the SNR obtained including
the first Ko frequencies in R. There are two cases to be
considered. The first, is that

SNR(K,) =2 SNR(K, - 1). (12)
We now propose to show that in this case SNR (Ko + 1)
> SNR(Kj), hence implying that both Ko and Ko + 1
must be included in the optimal region of support. T.et
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A
8=\ IS (13)
=
We will assume from now on that the constant « is

equal to one. This will not affect our optimization
process. Then using Eq. (13) in Eq. (3), we obtain

SNR(K, + 1) - SNR(K,)

_BHISKI? g
K,+1 K,

= - 1 PR 2 - R

KJK,+ 1) {K(IS(K )P + 28IS(K M) — 7). (14)
Similarly, using Eqs. (3), (12), and (13), we obtain the
following result:

SNR(Kg) ~ SNR(K, - 1)
_ B ISKI?

K, (K,~1)
= [—8% + Ko(28IS(K )| ~ IS(K DK (Ko~ 1)) = 0. (15)

Using the above result, we can obtain the following
inequality:

Ko(28IS(K ) + IS(K ) — g2 = 0. (16)

If we use Eq. (16) in Eq. (14), we obtain the desired
result that SNR(K, + 1) is larger than SNR(K). The
second case is that

SNR(K,) < SNR(K, - 1). an

In this case, it is not difficult to see that
Koy <Koor K, 2 Ky +1, (18)

indicating that either both pixels Koand K¢ + 1 or none
of the two are included in the optimal support. When
we have three or more frequencies with identical mag-
nitudes, it is easy to show that either all of them or none
of them are included in the optimal region R. Toshow
this, we apply the above result to all possible pairs of
frequencies in this set of equal magnitude frequencies.
This completes the proof of the proposition.

The above proposition suggests an improved algo-
rithm. Suppose we quantize the magnitudes |S(i)l,i =
1,...d into N levels. Then, we do not have to com-
pute the SNR for all d pixels. It is enough to compute
the SNR for the N quantization levels only, knowing
from the above proposition that pixels with the same
quantization level will either all or none be included in
the optimal region of support. Hence, we have a new,
very efficient suboptimal algorithm for the selection of
region of support for POF. The efficiency of this new
algorithm stems from the fact that it is, in principle,
independent of the number of pixels and depends pri-
marily on the number of quantization levels which is
expected to be smaller than the number of pixels for
practical cases. The suboptimality of this new algo-
rithm is due to the approximation that all pixel magni-
tudes falling in the same quantization level are equal.
This approximation can be made more accurate by
increasing N (the number of quantization levels).

2994 APPLIED OPTICS / Vol. 29, No. 20 / 10 Juty 1990

Fig. 1. The 32 X 32 tank image used in the simulations.

8. Aigorithm

Below, we list the basic steps of the proposed algo-
rithm.

Step 1: This normalizes and initializes variables.
The signal FT magnitudes |S(n)| are normalized by
dividing all of them by the largest magnitude.

Step 2: This step quantizes all IS(n)| values to N
levels. We also assign tags to frequencies to indicate
which quantization level that frequency belongs to.

Step 3: This step searches through the N quantiza-
tion levels to determine the optimum quantization
level.

Step 4: This step determines the optimal region of
support using the optimal quantization level deter-
mined in Step 3.

C. Numerical Results

We have implemented and tested this new algo-
rithm. Inour computer simulations, we used the 32 X
32 pixel gray level tank image shown in Fig. 1. To
compute the OPOF, the tank image is zero padded and
a 64 X 64 FFT is performed. For the comparison
between the old and new algorithms to be fair, we used
the most efficient sorting technique (HEAP SORT!2) to
implement the cid algorithm. Using N = 256 levels,
we obtained in 0.13 8 the same optimal region of sup-
port we got in 10.15 s with the old algorithm. Thisisa
reduction in CPU time by a factor of 78. As already
mentioned, we expect this fac*or to increase even fur-
ther as the number of frequency pixels increase. To
test this, we increased the size of the FFT to 128 X 128
and applied our new algorithm with N = 256. It took
0.5 8 to find a region of support made of 235 pixels to
yield a numerically computed SNR (assuming unit
variance white noise) of 76.46116 (= 18.834409 dB).
Using the old algorithm, it took 64.6 s to find the
optimal region of support consisting of 237 pixels to
yield a numerically computed SNR of 76.46427 (=
18.834585dB). The new algorithm has now achieved a
CPU time reduction factor of almost 130! There is a
small price though. We have given up ~0.00018 dB in
SNR. By increasing N from 256 to 400, we obtained
the optimal region of support exactly (i.e., 237 pixels)
in practically the same CPU time (0.5 s).




Before moving to the next section, a final assessment
of the new algorithm is due. It seems that this newly
proposed algorithm has provided us with tremendous
savings in computer time (about 2 orders of magni-
tude) at the expense of a very small loss in SNR (<2 X
1074 dB). As argued above, we can even get exact
results with a saving of at least 1 order of magnitude in
CPU time (this being a rather conservative number).
It turns out that both the new and old algorithms use
the same memory storage, since the d-dimensional
array that is used in the old algorithm for the sorting
procedure is used in the new algorithm for tagging the
pixels (i.e., to which level each pixel belongs). We
must mention that all the CPU times presented above
do not take into account the time to compute the FFT,
get the magnitude of the pixels and normalize them,
and the input/output operations. All these computa-
tions are common to both algorithms and, hence, will
affect both the same way.

IV. Efficient Suboptimal Algorithm for BPOF Design
A. Analysis

Asin the POF case, we put forth the following propo-
sition:

Proposition 2. 1f the real (imaginary) part of two or
more pixels in P,(P,) are equal in sbsolute value, either
all of them or none of them are included in the optimal
Py(Py).

Proof: The proof is similar to that of the corre-
sponding proposition in the previous section. The
only difference is that the optimization is now per-
formed with respect to two variables K; and K rather
than with respect to just one variable Ky as in the case
of OPOFs. Hence, the only thing that needs to be
verified is that by replacing the discrete version of the
SNR expression [given in Eq. (3)}] by

K 2
I Z isG)l l +a
SNR(K) = L™ — 19)

K+b

where a and b are arbitrary non-negative constants,
the conclusion of the first part of the proof of proposi-
tion in the previous section is unaffected. Namely, it
can be established in exactly the same way as before
that if IS(Ko)l = IS(K, + 1)| for some K, = 2 and if
SNR(Ky;) = SNR(K, — 1), then SNR(K; + 1) =
SNR(Ky). Here |S(i)| refers to the appropriate real
part or the imaginary part of the signal FT. This
completes the proof of the proposition.

As before, the idea is to quantize IS,(n)l, n € P, and
ISi(n)l, n € P,. By virtue of the above proposition,
instead of performing the optimization over the K; X
K grid of pixels (K (K) is the total number of pixelsin
Py(P,)), we focus onlyon a N X N grid (N is the number
of quantization levels).

B. Algorithm

Below, we list the basic steps of the efficient subopti-
mal algorithm:

GO

Fig. 2. The 32 X 32 pliers image used in the simulations.

Step 1: Find the partitions P, and P.

M1 = Max{lS,(n)l,n e P,

M2 = MaxﬂS,(n)l,n € Py,
M = Max[M1,M2],

S(n)—S(n)/M,n=1,...d.

Step 2: Quantize |S.(n)|,n € P; and ISin)l, n € Pa.
Assign tags to the corresponding pixels.

Step 3: Search through an N X N grid to get opti-
mal levels L; and L.

Step 4: Get optimal P,(P,) by direct comparison
with Li(Lo).

C. Numerical Results

We have implemented and tested the above algo-
rithm. Using the same 32 X 32 pixel tank image and a
64 X 64 (the tank has been centered) FFT, it took 1585s
with the original algorithm to find the optimal region
of support. Optimal R was obtained by trying nine-
teen TLAs, from 0 to 90 in increments of 5°. Applying
the new algorithm with N = 250, it took only 16.8 s to
obtain eighteen of these regions exactly and one region
within 2 pixels (60 instead of 58 pixels). The CPU
time reduction factor is ~95. By increasing N to 400,
all the regions were computed correctly in 36.4s. This
corresponds to a CPU time reduction factor of 44. It
can be seen from here that the computing time of the
new BPOF algorithm is a faster increasing function of
N than in the OPOF case. This is a consequence of
searching over a grid rather than along a line.

As before, the CPU time reduction factor becomes
more significant as the number of pixels increases.
We increased the FFT size to128 X 128 pixels and
focused on the optimal support for the Hartley BPOF
(TLA = 45°). It took 1939 s for the old algorithm to
find the optimal region of support; whereas, the new
algorithm with N = 256 took only 1.98 s to find the
same answer. This is a time reduction factor of ~980!

We tested this algorithm using several other images
(such as a noncentered tank image, centered and non-
centered pliers image). The centered pliers image is
shown in Fig. 2. Once again, FFTs of size 64 X 64
pixels were used. For N = 256, fifty-six out of the
seventy-seven images tried resulted in exact regions of
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support with an average reduction factor in CPU time
of ~77. 'The worst SNR loss was 0.00046 dB. For N =
400, sixty-four out of the seventy-seven regions of sup-
port were found exactly with an average CPU time
reduction factor of ~35. The worst loss in SNR was
well within that of the case with N = 256. Once again,
all the above timing estimates were done excluding
FFTs, inputs/outputs, partitioning, and normaliza-
tion.

V. Summary

We have presented two very efficient suboptimal
techniques for the design of regions of support for
POFs and BPOFs. These new algorithms seem to
provide a reduction in CPU time from 2 to 3 orders of
magnitude. The loss in SNR observed in all cases
treated was negligible (<0.001 dB). We believe that
these new algorithms will make it possible for optimal
POFs and optimal BPOF's to be designed in real time.

The authors would like to acknowledge the partial
support of this research by the United States Air
Force, Hanscom Air Force Base under Contract F-
19628-89-k-0032.
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noise ratios (SNRs) and show with the help of simulation examples that
their performance (in the sense of SNRs) is close to that of optimal matched
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1. INTRODUCTION

Although matched spatial filters originally introduced by
VanderLugt' provide the highest output signal-to-noise ratio
(SNR), they have not become practical in many applications due
to the complex nature of the spatial filter required. Lately, much
research effort has been devoted to methods avoiding the use of
complex spatial filters. This research has suggested the use of
phase-only filters (POFs),>® binary phase-only filters (BPOFs),™"°
ternary-valued spatial filters,' "> and quad-phase-only filters
(QPOFs),'*'* among others. Research effort has also been di-
rected toward the analysis'®?° of the performance of these par-
tial-information filters.

The BPOFs are attractive from ifmplementational considera-
tions because of the availability of rapidly programmable binary
spatial light modulators (SLMs) such as the magneto-optic SLM.




The SNRs obtainable using BPOFs were bounded'’ to be no
worse than 6 dB below the SNRs of POFs and were observed'?
in numerical exp:riments to be about 4 to 6 dB below the SNRs
obtained using the best POFs. However, when compared with
the SNR of the classical matched filter, the best BPOF SNRs
were still about 4 to 5 dB lower. In this paper, we propose a
practical way of using ternary SLMs'? 10 obtain SNRs very close
to those obtained using the classical matched filter. The basic
wdea is to use two ternary SLMs, one serving as the real part of
a complex function and the other serving as the imaginary part.
These filters can be implemented using a Mach-Zehnder ar-
rangement with onc termary SLM in each path. The Mach-Zehnder
dppr()dkh is conceptually simple. Another means of implemcn
tation is the detour phase method in Ref. 15, which re uires
only onec SLM. As shown earlier for POFs® and BPOFs,'* it is
necessary to mask out certain spatial frequencies in each BPOF.
Thus, both the real pant and the imaginary part of this complex
filter can take on three values (+ 1, —1, and Q) and hence the
name complex ternary matched filters (CTMF). This paper pre-
sents the basic analysis of CTMFs, discusses the optical imple-
mentation, and presents simulation results to illustrate the ad-
vantages of CTMFs.

In the next section we provide a brief background™o help set
up the notation. Then, Sec. 3 introduces CTMFs and describes
how the CTMF support function can be selected to yield max-
imum SNR. An efficient algonithm for designing these optimal
support functions is presented in Sec. 4. In Sec. 5 we discuss
the optical implementation of CTMFs and discuss some asso-
ciated 1ssues. The results of our numerical simulations are shown
in Scc. 6 to illustrate the advantages of the proposed method.

2. BACKGROUND

The problem under consideration is the detection of a ‘*known™
signal/image s(x) in the presence of additive, zero mean, sta-
tionary noise n(x). While we will use the I-D notation through-
out for convenience, all of our results are easily generalized to
higher dimensions. It is common knowledge that the matched
filter provides the highest SNR for this problem. The SNR is
defined as

|E{CO)

SNR = var{C(0)}

1)

where C(0) denotes the filter output at x = 0 and E{-} and var{-}
denote the ensemble average and variance, respectively. This
SNR measure characterizes the sensitivity of the filter to noise
in the input image. The linear invariant filter that maximizes the
above SNR is given by

s _ Bk,

H =1
MR T YR

exp{ —/8:(f)] , @

where «a is an arbitrary complex constant, P,(f) is the noise
power spectral density, S(f) is the Fourier transform (FT) of
the reference signal s(x), and |S(f)| and 0 f) denote its mag-
nitude and phase. respectively. For white noise, Pn(f) is a
constant independent of f and the matched filter has a transfer
function equal 10 aS*(f).

It can be easily seen from Eq. (2) that the matched filter is
complex valued. This poses two problems The first problem is
that the light throughput efficiency®' of this filter is low because

3

the filter magnitude is generally less than unity. The second
problem is that most available SL.Ms cannot accommodate com-
plex-valued functions. A possible solution to the first problem
is to employ the phase-only filter, given by

Hpol f) = expl —jo,(f)] . 3)
The POF given in Eq. (3) yields 100% light efficiency and
produces sharp correlation peaks but suffers from being very
sensitive to input noise bccause of its all-pass nature. Vijaya
Kumar and Bahri recently® introduced the optimal phase-only
filter (OPOF) in which they design the POF support function t
obtain the maximum SNR.

While the POFs discussed here meet the requirement of higher
light efficiency, they still require an SLM capable of representing
a continuum of phase values. Since some of the popular SLMs
can accommodate only two phase levels (0 and «), much re-
search interest’™'® has been focused on binary phase-only filters.
Early versions of BPOFs employed the binarized versions of
either the real part or the imaginary part of §(f), and some later
versions used the binarization of the Hartley transform of the
signal. As in the case of POFs, it was realized that we must
select appropriate support functions'? even for BPOFs. The added
constraint of a support function results in the filters’ taking on
thrce values (+1, 0, — 1) rather than just two values. Kast et
al.'* showed recently that the magneto-optic SLM (MOSLM)
can be configured to yield the thrcc desnred transmittance values.

Recently, Dickey and Hansche'* introduced the quad-phase-
only filter, defined as

Horor( f) = sgnlSe(f) —jsgnlSi(f)] . @)
where the signal Fourier transform is given by

S(f) = Se(f) + jSuf) )
and where sgn{-] is defined as

w1 rzd

The advantage of using the QPOF in Eq. (4) compared to the
use of a BPOF is that (in some sense) we are encoding both the
real part and the imaginary part of the matched filter. Dickey
and Hansche'* show that the SNRs obtainable from QPOFs can,
in some cases, be 3 dB more than those from the BPOFs de-
signed from Hartley transforms. They also show that the QPOFs
can be implemented using two binary SLMs in a Mach-Zehnder
ammgemem or by using one SLM and the method -f detour
phase.’

3. COMPLEX TERNARY MATCHED FILTERS
An obvious improvement to the quad-phase filters discussed in
Sec. 2 is the CTMF:

Herae(f) = nlH\(f) — jHAS) M
where both H (f) and Hy(f) are temary filters, i.e., they tak.
on values + 1, 0, or — 1. The arbitrary complex constant n does
not affect SNRs and will be taken as 1 without any loss of
generality from now on. Note that we are not assuming a priori
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that H(f) is obtained by binanzing Sg(f) and that Ha(f) is
obuained by binarizing S;(f). In this section, we show that the
best choices for Hi(f) and H(f) are indeed obtained by bi-
narizing Sg(f) and $;(f) (or some linear combination of these
two) once the support functions are fixed.

Let us denote by R; the region of spatial frequencies for which
H.(f) is nonzero, i.e., takes on values +1 and — 1. When the
CTMEF of Eq. (7) is used in a comelator, there is no guarantee
that the correlation output has its maximum value at the origin. 16
However, we consider the output SNR at the origin for our
maximization for the following reasons: First, the resultant SNR
expression is analytically tractable. Second, the peak will be
very close to the origin even though it may not be exactly at the
origin. Third, if the correlation peak is not at the origin, then
the origin SNR estimates will be conservative, and optimizing
these can only imply even higher SNR value somewhere else in
the correlation plane. The position of the correlation peak with
respect to the origin is determinable and should not be a problem
for tracking. The origin SNR of Eq. (1) can be written as

2
U S(f)”(f)dfl
SNRcrmr =

f P df

2

[scomcrar

f PASNHISY + HUS)Mdf

2
US(I)[H:(I) - .in(f)ldfl

i [ P + [ P ®

Note that the denominator of the SNR expression in Eq. (8) is
fixed once support regions R, and R; are fixed. Let us now
assume that Ry and R; are fixed and determine the signs of H,( f)
and Hy( f) to maximize the numerator of the SNR expression.
Toward this end, let us denote the complex value resulting from
the integral in the numerator in Eq. (8) as |[Clexp(jB), i.¢.,

fsu)lﬁ.(f) =~ JHAS)df = |Clexp(jB) - ©)
Thus, for a given S(f), every possible filter H(f) has an as-
sociated B, the phase of the correlation output at the origin.
Thus, maximizing the numerator of Eq. (8) is equivalent to
maximizing |C], given as

Il = IH(/)S(f)exp( B

= f HONISU exp{A0,0) ~ &) — BIM . (10)
where |H(f)| and |S(f)| denote the magnitudes of H(f) and
S(f) and —0,(f) and 8,( f) denote their phases. Since |C] is
real, the imaginary terms on the right-hand side of Eq. (10)
cancel out. Equation (10) can thus be written as
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Icl = JIS’RU)H.(I) + SUHASNS ()

where Sg(f) = RefS(f)lexp(—jB)] and S,(f) = Im|S(f)
exp(—jB)}. Clearly, to maximize Eq. (11) we must choose

_ fsenlSe( . fER, . )

Hif) = {0 . otherwise , (12)
_ JsenlSifN . fER:

HAf) = {0 , otherwise . (13)

Thus, we can rewrite the CTMF yielding the highest SNR as

]

In,(f)senlSe()) = jlal f)sgnlSi(f))
In(f)sgnlSe(f)xcosp + 5,(f)sinB]
~jlr L f)sgn[ — Se(f)sinB + S;(f)xosB] ,

Herme f)

(14)

where support functions /g, are 1 for f contained in R; and O for
S not in R;. When B is 0 in Eq. (14), Hi(f) binarizes Sg(f)
and H,( f) binanizes S;(f).

Let the optimal CTMF [maximizing |C| in Eq. (11)] result in
a correlation output phase of B*. The proof of the optimality of
Hg+( f) is provided in the appendix, where we show that H( f)
and Hy(f) in Egs. (12) and (13) result in phase 3* when sub-
stituted in Eq. (9). That is, the equations are consistent for the
phase angle of the optimal CTMF. For any other $8 (not corre-
sponding to the maximum), the filter defined by Egs. (12) and
(13) may not result in phase 8 in Eq. (9). In this case, it can
be shown that Eq. (11) is just the real part of the correlation
response, which is less than or equal to the magnitude of the
correlation response. Thus, our search for optimal CTMFs can
be constrained to filters of the form in Eqs. (12) and (13).

The SNR of the CTMF can be obtained from Eqgs. (8), (9),
(11), and (14) in the form

2
{ [ Urd R + lh(f)IS,(f)ndf}
SNRcrvr =

(15)
IP..(f)lln.(f) + I M

It should be noted that the SNR given by Eq. (15) is a function
of B and the support function Ig, and Ig,. The problem of op-
timizing the SNR is then one of searching over the range of
admissible B and support regions.

To determine the H(f) = H\(f) — jH2(f) that maximizes
the SNR in Eq. (8), we can proceed as follows: (1) For each B,
find the Ha(f) = H\(f) — jHx f) that maximizes |C] in Eq. (11).
Let |[C(8)| be the resulting maximal value. (2) Determine the B*
that maximizes |C(B)|. The filter function Hge(f) then maxi-
mizes the SNR in Eq. (8).

Further, the integrand in the numerator of Eq. (15) can be
written as

Ir,JSrcosf + Sisinf| + Ig]|— Sesinf + Srcosg|

Spcos(B + -121) + S,sin(ﬁ + %)

= g |SrcosB + Sisinf| + Ig,

(16)




It can be seen from this equation that the range 0 < g < /2
covers all possible values of the numerator in Eq. (15). There-
fore, the search need only consider this range of values for B.

The maximization of Eq. (15) for general noise spectra can
be quite involved. For this reason, we treat the practical and
commonly used case of white noise. For white noise P,(f) =
No. and Eq. (15) becomes :

2
{ [ttairasecrn + IR,U)IS,U)ndf}

SNRermy = amn

Nofllk.(f) + Ie () Mf

We now describe an efficient algorithm to determine the optimal
regions of support for fixed B. A search over § compietes the
optimization of Eq. (17).

4. EFFICIENT ALGORITHM FOR SUPPORT
FUNCTION SELECTION

In this section we describe an efficient algorithm to select the
support functions /g, and Ig, to maximize SNRcrmr in Eq. (17).
To enable the use of a digital computer, we discretize the
SNRcTME expression as -

2
[g,l et + 2 ls,(j)l]

SNRetme =
Revme = a N K, T K2 R s)

where a is a constant-that depends on the sampling interval 4Af,
Ki denotes the number of samples in R;, i=1,2, and Sg(i) and
S1(j) in Eq. (18) correspond to Sg(iAf) and S;(jAf). The con-
stant a does not affect the selection of the best R; and R».

Note that the denominator of Eq. (18) depends only on the
areas K; and K2 of the support functions and not on which
particular frequencies are included in R; and R;. Thus, for a
given K and K> we must Ainclude the K = (K, + K32) highest
values among |Sg (/)] and |S;(i)| for 1 < i < N. Using these, we
can find the highest possible SNR for given K. Then we vary
K over all possible values and select the best SNRcrmr.

Let $(i) = SR(i) + j8i(i), 1 < i < N, denote the N-point
discrete Fourier transform (DFT). Then the following algorithm
outlines the basic steps in identifying the optimal support func-
tions R, and R,.

Step 1. Sort |Sg(i)] and |S,()] values as
Bl1=18= .. =25%,. (19)

where |3 denotes the ith largest value among |[Sg(i)] and
ISi(i)] for 1 <i<N.
Step 2. Compute the following running sum:

KX
RK) = 2 51 0

Step 3. Increment K from 1 to 2N in steps of 1. Then

RY(k)

R = .
SNRyax(K) uNoK

n

Step 4. Determine the best SNRmax(K) over all K.

CORRELATION
PLANE

Fig. 1. Mach-Zehnder realization of the CTMF.

Once K is determined, the CTMF is uniquely determined
because K, and K> can be determined from the sorted list in
Eq. (19). The real part H,(f) will be equal to sgn[Sg(f)] for
the spatial frequencies with the K, highest |Sk(i)] values and
Hx(f) will be equal to sgnlS/(f)] for the frequencies with the
K> highest [S;(i)] values.

5. OPTICAL IMPLEMENTATION

The CTMF of Eq. (7) can be implemented using the architectures
suggested earlier,'*'> for the QPOF. We show the more illus-
trative Mach-Zehnder architecture in Fig. 1 schematically. This
is basically a two-path system. In each path, we do spatial
filtering using a magneto-optic spatial light modulator. The
MOSLM in the top path implements H;( ), whereas the one in
the bottom path implements H2( f). We can obtain the CTMF
Hi(f) — jH2(f) either by placing a 90° phase shifter in the
bottom path or by making sure that the two paths differ in their
length by A/4, where A is the wavelength of the coherent source.
The light waveforms from the two paths are then interfero-
metrically detected to yield the output correlation. Other types
of filters can be obtained by using the path length difference and
the fraction of light in the two legs as additional degrees of
freedom. We can replace the two paths in Fig. 1 by a single
path if we can get a SLM capable of yielding nine possible
complex transmittances (0, 1, —1,j, —j, 1+, 1 —j, — 14},
and —1—j). However, this is not possible with real-time de-
vices. The detour phase method, discussed in detail in Ref. 15,
can be used to implement the CTMF in a single device. In this
approach, alternate MOSLM elements (in one dimension) are
used to represent Sg and Sy, respectively, with a corresponding
loss in space-bandwidth product. The detour phase implemen-
tation is mechanically simpler and more stable.'’

5.1. Peak bifurcation

A problem often noticed® in the use of BPOFs is that the cor-
relation outputs had two peaks instead of one. Such extraneous
peaks must be eliminated before we can use the correlator for
target location. Some explanations for this phenomenon of **dou-
bie peaks’’ have been put forth and methods have have been
proposed for its reduction.'’? We believe'”"23 that the reason
for producing double peaks with BPOFs is the following. When
designing BPOFs, we must first convert the complex matched
filter Sg(f) — jSi(f) into a real function [cosBSg(f) + sinBS;(f)]
before binarizing it to obtain a BPOF. Here B refers to the
threshold line angle available as a variable in BPOF design.>*
This conversion of complex functions to real functions imposes
an artificial symmetry on the impulse response of the BPOF that
can cause the peak bifurcation in the correlation plane. On the
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{a)

Fig. 2. 32 x 32 tank image used in the simn- Fig. 3. Support functio
ulations. = 0 CTMF. Black is op

EBLE 1. Output SNRs from various filters.

[oput

SNR Matched

(dB) Fllte: PO¥ OPoOF BFOF-Re

=720 1076 S 69 9.37 411
-10 20,64 14.77 19.28 12.23
0 30.60 2473 29 .07 22 07
10 40 .59 34.72 38.98 32.02
20 50.58 [ 48.9? 47 .00

{b)

ns (over 64 x 64 arrays) for sgn{Sg( f)] and sgn[é,( f)] obtained for 3
aque; white is transparent: (a) Imaginary mast . (b) real mask.

ORPOF -Re BPOF- Im OBPOF-Im QPor CTMF

7.63 4,07 5.19 9.4 8. 76
17.42 10.64 15.11 14.62 18 .67
27.24 20.76 25.11 2459 ?8.63
37.15 30.79 35.10 34.58 38.64
471.27 40 .81 45.10 4657 48 .63

other hand, the CTME proposed here retains the complex nature
of the onginal matched filter and will break the simple symmetry
of the BPOE. Thus, we do not expect to see double peaks in
the correlation plane. We must, however, caution that the filter
function can have higher-order symmetries.

6. SIMULATION RESULTS

We carried out computer simulations to investigate the advan-
tages of using CTMFs. As the reference image of interest, we
chose the tank image shown in Fig. 2. This image is of size
32 x 32, with each pixel having & bits of gray-scale resolution.
This image was placed in a 64 X 64 array pnor to carrying out
a 64 x 64 fast Fourier transform (FFT) to determine |Sg(K)| and
IS1(K )| values for | = K =< 642 The origin of the 64 X 64 array
was made to coincide with the centroid of the image in Faig. 2
5o that the reference image is centered at the origin. We used
zero padding rather than padding by average value as was donc
elsewhere®® since we want to get linear correlation, not circular
correlution. The tmage cnergy 1s normalized to I and has 60.26%
of this energy in the even part and the remaining 39.74% in odd
part.

The efficient aigorithm outlined in Scc. 5 was then applied
to the 64 ¥ 64 array obtained after the FFT was camied out. The
optimal support functions obtained for sgnfSe (/)] and sgnl$,(f)]
are shown in g 3 for B = 0. Here, the transparent regions
indicate the spatial frequencies for which the tilters are nonzero.
These tigures are plotted such that the center of the array cor-
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responds to the (0,0) spatial frequency. Note from Fig. 3 that
mostly low spatial frequencies (which have most signal energy)
are being allowed through. This can cause two problems. First,
the resulting hight efficiency will be reduced. However, since
the open regions i the frequency planes correspond to regrons
in which the signal has most energy, the reduction should not
be too great. Second, this filter may not do a good job of dis-
crimination because signal high frequencies are being totally
suppressed. However, once we realize that CTMF was designed
to yield the highest SNR, we must accept the deficiencies that
come with the best SNR. However, if best discrimination be-
tween two signals Si(x) and $20x) is of interest, we must match
our filter to S(x) = [Sy(x) - S2(x)] and investigate its discnam
ination perfornuance.

To investigate the sensitivity of CTME o noise in the input,
we added zero-mean, white Gausstan noise of vanance o to
the reference image. This noise was gencrated using standard
random number generators. Since the input image of size 32 x 32
has a total energy of 1, each pixel on the average has energy
(1/1024). When the noise pixels have a variance of «”, the input
SNR 15 defined as

1
SNR Hog ol - ) . 2
Ri o m(l()li(r' @4

In Fable {. we show the output SNRs obtained using vanous
filters tor five different anput SNR vilues. The output SNRs
were calculated by collecting the correlation output values (at




TABLE il. CTMF output SNRs as a function of B (input SNR =
0 dB}.

B (deg.) SNR (dB) B (deg.) SNR (dB)
) 28.63 50 28.75
5 28.65 55 28.69

10 28.69 60 28.63
15 28.70 65 28.52
20 28.55 70 28.55
25 28.52 75 28.70
30 28.63 80 28.69
35 28.69 85 28.65
40 28.75 90 28.63
45 28.81

the ongin) for 200 noise realizations with the same variance.
The output SNR is then given as the ratio of the average of the
200 values to their standard deviation.

In Table | we list the output SNRs obtained using the matched
filter, the conventional phase-only filter, the optimal phase-only
filter, optimized and unoptimized binary phase-only filters (BPOFs)
using the real part as well as the imaginary part of S(f), the
quad-phase-only filter, and the proposed complex ternary matched
filter with 8 = 0. Obviously, the MF provides the highest output
SNRs among all of the filters. Also, there is a 10 dB improve-
ment in the output SNR for all filters with a 10 dB improvement
in thc input SNR. These results indicate a processing gain of
about 30 dB for the matched filter. This agrees with the fact that
the image has unit energy and noise variance of (1/1024) (for
SNRin = 0 dB), which should result in an output SNR of 1/
(1/1024) = 1024 or about 30 dB.

The conventional POF provides output SNRs about 5 to 6 dB
lower than those of the matched filter, whereas the optimized
POF yields SNRs about 1.5 dB below those of the matched
filter. Between the two BPOFs, the BPOF using the real part
performs better, perhaps due to the fact that the signal has more
energy in its even part than in its odd part. Note that the optimized
BPOF using the real part yields output SNRs about 4 to 5 dB
below those of the MF. The QPOF resuits in output SNRs about
6 dB below those of the MF. Finally, the CTMF (for B = 0)
proposed in this paper yields SNRs about 2 dB below those of
the matched filter. Thus, the SNRs obtainable from a CTMI
(which requires two binary SLMs) seem to be very close to the
SNRs obtainable from optimal POFs (which require a SLM
capable of accommodating a continuum of phase values).

The algorithm was next used to ~ompute the output SNR for
increments of B of 5° and an input SNR of 0 dB. The results
are presented in Table I1. From the table, it can be seen that the
maximum SNR is obtained for B = 45°. However, the peak
value exceeds that for § = 0, the natural binarization, by only
0.18 dB in this case. We expect that the 8 = 0 binarization
will generally give near-optimum SNRs for real object functions.
It should be noted that as discussed following Eq. (14), Egs.
(12) and (13) define a filter for arbitrary B and the numerator of
Eq. (I5) is just the real part of the filter response. Thus, the
values in Table Il are conservative and the maximum value is
the actual value of the optimal filter response.

The SNRs discussed so far are concerned with only one point
in the correlation plane (namely, its origin). In Fig. 4, we show
the output correlation planes (of size 64 x 64) obtained using
MFs. POFs, and CTMFs when there is no noise in the input

Fig. 4. Complete normalized (peak value set to 1) 64 x 64 correlation
outputs for no noise in the input. (a) Matched filter; (b) conventional
POF, (c) CTMF.

plane. All correlation peaks are normalized to the same height
in these plots since the absoiute values are not important. Note
that the conventional POF yields the sharpest correlation peaks,
whereas the CTMF yields corretation peaks that are broad. In
Fig. 5, we show the three correlation plots when the input SNR
is G 'B. The conventional POF exhibits most variation in the
correiation plane, whereas the CTMF seems to achieve tolerance
to input noise by allowing for broad correlation peaks. Also,
no.i~e that there are no double peaks in the output correlation
plane wii=n we use the CTMF. To contrast this, we show in
Fig. 6 the ¢. ~ut correlation when the filter is the optimized
BPOF (from the ....2einary part) and when there is no input
nois-. This clearly displays two equally high correlation peaks.
These simulations have clearly demonstrated the advantages of
the CTMF.

7. CONCLUSIONS

In this paper, w- introduced a new spatial filter, the complex
termary matched filter, and presented the theoretical analysis
required for maximizing its output signal-to-noise ratio. We also
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Fig. 5. Complete normalized 64 x 64 correlation outputs for input
SNR = 0 dB. (a) Matched fitter; (b) conventional POF; (c) CTMF.

presented an efficicnt algorithm for determining the CTMF re-
gions of support that lead to the best output SNR. With the help
of simulation examples, we have shown that for the particular
case studied, the CTMF yields SNRs that are within 2 dB of the
SNRs provided by the matched filter. Also, the CTMF does not
exhibit symmetry effects such as double peaking.

Based on this, w= believe that the CTMF provides a practical
method for obtaining SNRs close to those of the matched filters
while using only ternary programmable spatial light modulators
in the filter plane. While it may be of theoretical interest to go
beyond using two binary SLMs, we feel that our results indicate
that the CTMFs offer very close to the best performance ob-
tainable and thus any additional improvements may not warrant
the complexity.
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Fig. 6. Complete nonmalized 64 x 64 correlation output when there
is no input noise and filter is an optimized imaginary part BPOF.

9. APPENDIX

For fixed R, and R>, the denominator of the SNR expression in
Eq. () is unaffected by the choice of H(f) = Hi(f) — jHAf).
Thus, we focus only on maximizing the numerator, or equiva-
lently, the expression for |C] in Eq. (11). Let 8* correspond to
the filter H’.g(f) that maximizes IC(B)I and let the resulting max-
imum be |C(B*)]. Then,

lc@»l = f (Spen(IHpet(f) + Sped NHpA NI (AD
where the subscripts * are included to dencte the explicit de-
pendence of S (f) and Hg(f) on it. It is obvious from Eqs. (12)
and (13) that the following filters maximize the right-hand side
of Eq. (Al):

_ ] senlSpepth)) . forfER, |

)y = 0, otherwise , (A2)
_ ) senlSged N, forfeR, ,

sy = 0, otherwise . (A3)

For the filters in Egs. (A2) and (A3) to be valid, optimal choices,
we must verify that they result in angle B* when substituted in
Eq. (9). To prove that this is true, let us assume that the filters
result in angle B; + PB* when we use Eq. (9). Let A = 8, —
f* and note that, by definition,

Refexp(—3*) f S(f)Hp«(f)dfl = |CB*) . (A4)

exp(18%) [ SU M3 = lexpl-+8) (AS)

The left-hand side of Eq. (A4) is the real part of the complex
quantity in the left-hand side of Eq. (AS). Thus, if A # 0, we
have

IC] > lcB*)] (A6)
This is a contradiction since wc are assuming that [C(B*)] is the
maximum possible value in the numerator of Eq. (9), but if Eq.
(A6) holds, we have a larger value.
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Design of phase-only, binary phase-only, and complex
ternary matched filters with
increased signal-to-noise ratios for colored noise

B. V. K. Vijaya Kumar

Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

Richard D. Juday

Tracking and Communications Division, NASA Johnson Space Center, Houston, Texas 77058

Received June 26, 1990

An algorithm is provided for treating nonwhite additive noise in determining regions of support for phase-only
filters, binary phase-only filters, and complex ternary matched filters. It is analytically shown to be optimal in
the signal-to-noise ratio sense. It extends earlier research that assumed white noise.

In signal detection in the presence of additive noise,
using any known spectral characteristics of the noise
is important. It is not enough to have a large re-
sponse to the signal, if that sole criterion produces a
large response to noise also. In this Letter we will
consider the signal-to-noise ratio (SNR) as the mea-
sure to be optimized. We explicity accommodate
colored noise in the filter design.

A practical filter must have a physical implemen-
tation, and the available spatial light modulators
(SLM’s) are restricted in the complex transmittances
that they can express. In that context filter opti-
mization is then done with the knowledge of noise
spectrum, signal spectrum, and the operational
limitations of the SLM. Some subsets of the global
problem have been explored. For example, without
regard to SLM limitations and if the noise is white,
the classical matched filter' is known to optimize
the SNR. However, this filter requires the use of a
complex-valued transmittance in the filter plane, al-
though extant programmable SLM’s do not access
full regions in the complex plane.

There has been growing interest in replacing clas-
sical matched filters by partial information filters
that are less demanding of the SLM. For the most
part they have not taken noise into account (whether
white or nonwhite). They have instead concentrated
on the SLM limitations. Primary examples include
phase-only filters? (POF’s), binary POF’s® (BPOF’s),
and quad POF’s.* Since these filters are essentially
all pass filters, all the input noise comes through
unattenuated, thus deteriorating the output SNR.

Recently we have begun to optimize filters with
respect to additive input noise, in the general context
of SLM’s that are limited to expressing the filters of
Refs. 2-4. We suggested that, by making the filter
magnitude zero at some spatial frequencies, we can
significantly improve the SNR. The set of frequen-
cies for which the filter magnitude is not zero is

0146-9592/91/131025-03%5.00/0

known as the region of support (ROS). We have pre-
viously derived algorithms to determine the optimal
ROS'’s (in the sense of maximizing the SNR with
white noise) for POF’s,® BPOF’s,® and a modification
of quad POF’s that we call the complex ternary
matched filters” (CTMF’s). In this Letter we derive
algorithms for determining the optimal ROS’s when
the noise is colored.

We will use one-dimensional notation for conve-
nience. However, all our results can be easily gen-
eralized to higher dimensions. Let s(x) denote the
target signal and let n(x) be a sample realization
from a zero-mean noise process. Then the input
signal is assumed to be given by s(x) + n(x). Let
S(u) be the one-dimensional Fourier transform of
s(x) and let H(u) cenote the filter being used in the
frequency plane of the optical correlator. Since the
input s(x) is centered, we assume that the output
peak will appear at the origin, and we will denote
this as c(0). Strictly speaking, the ‘correlation is
guaranteed to peak at the origin only for (POF’s) and
classical matched filters for which the filter phase
completely cancels the phase of the Fourier trans-
form of s(x). For BPOF’s and CTMF’s, the phases
do nct necessarily cancel, and the peak may not be at
the origin. In such cases the SNR defined below is
smaller than the maximum possible:

SNR = |E[c(0)]|?/var{c(0)]
2
/ IP,(u)|H(u)|2du, N

where E[-] and var{-] denote the expected value and
the variance and P.(u) denotes the power spectral
density of the noise. When a ROS R is included in
H(u), we can rewrite the SNR as

i )
/ j Puu)| H(w)du. (2)
R

= | IS(u)H(u)du

SNR =

J S(u)H(u)du
R

© 1991 Optical Society of America
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We b e previously® 7 considered the case of white
noise [ ¢ . «) is a constant] and showed how R can be
determined to maximize SNR. Recently Flannery®
proposed a heuristic, iterative method for choosing R
to maximize SNR when P.(«) is not a constant. In
this Letter we will derive a rigorous, noniterative al-
gorithm to determine optimal R (with the under-
standing that, for BPOF's and CTMF’s, the SNR at
the origin is not necessarily the highest SNR in the
correlation plane) for the three types of filter (POF,
BPOF, and CTMF).

First, let us consider POF’s. It is straightforward
to show that H{(u) must equal exp[—j¢(u)] for all u in
R, where |S(u)| and ¢(u) are the magnitude and the
phase, respectively, of S(u). Using this in Eq. (2), we
can write the maximum SNR obtainable from a
POF as

2
SNRpor(R) = [L|S(u)|du} /L P(uwdu. (3)

In order to carry out the ROS selection on a digital
computer, we discretize the above expression as

2
SNRpor(R) = ( 3 |S,.|) / 2 Pu, (4)
kER keR

where S, = S(kAu) and P,, = P.(kAu) with Au being
the sampling interval. Also, we have omitted some
constant terms in Eq. (4) because they do not affect
the selection of the optimal ROS. For colored noise,
the following theorem proved elsewhere’ becomes
useful for the determination of the optimal R:

Theorem: Letx,y,>0fori=12,...,N Let
R denote a subset of integers {1,2,...,N}. Let the
subscripts be such that

z, = x/yi, 1=12,...,.N (5)

form a descending sequence; i.e.,
z1Z2 22232 ...22zxy>0. 6)

Then, if an integer 7 is included in the optimal sub-
set R* maximizing the ratio

n(R) = (Zac.-)2 2 Vi (7)

i€R i€R

all integers £ < n must also be included in R*
Comparing Egs. (4) and (7), we see that n(R) =

SNRpor(R) if x; = |Si| and y: = P.. This suggests

that the optimal ROS must be of the following form:

Reor = {i:(|Si|/Px) = T}, 8)

where T is a threshold to be determined. We will
explain the resulting algorithm with the help of an
example Suppose that we perform a 64 X 64 fast
Fourier transform on the reference image in order to
obtain 4096 |S,| values. Then we divide these by
4096 P,, values. These 4096 ratios are then sorted.
Different thresholds T are used, the resulting Rpor
and SNRpor are computed, and the highest SNR
among these is selected to yield R* Our theorem
above proves that the optimal R must be of the form

of Eq. (8). We will need to test at most 4096
thresholds in this example. Usually, we will need
fewer than 4096 thresholds. Suppose that we use
eight bits to represent the ratios 'S.!/P, 1 =
1,2,...,4096. Then we need to test only 256
thresholds since there are only 256 different ratios
possible. If we use more bits for representing these
ratios, we will need more thresholds.

Similar results can be derived for BPOF's and
CTMF's also. The BPOF with a ROS is really
a three-valued filter. It has been shown else-
where" that the optimal BPOF must be of the follow-
ing form:

sgn[Spr(u)] v € R

9
0 ue¢ R )

H(u) = [
where sgn[x]is +1ifx > 0,-1ifx < 0, and 0 ifx =
0. Also Sgr(u) is the real part of

SB-(u) = S(u)e .

The 8 in Eq. (10) is the same as the phase of the
complex ¢(0) at the origin of the correlation. The
resulting SNR is given as follows:

(10

2
SNRgpor(R) = [L|Ssk(u)|du} /L P.(u)du. (11)

Comparing Eq. (11) with Eq. (3), we see that they are
similar. Thus, using |Sgg(u)| in place of |S(u)] in the
algorithm presented above, we can obtain the opti-
mum ROS. However, unlike the POF case, this
must be repeated for all B values (in the range 0-
7/2), and the best SNRgpor(R) must be used. It can
be shown’ that the resulting BPOF does indeed pro-
duce a consistent correlation phase at the output.
Finally, we consider CTMF’s defined as

Herme(u) = Hi(u) — jHy(u),

where both H;(u) and H;(u) can take on three values
(+1,0,and —1). The optimal CTMF is given’ by

(12)

_ |sgn[Sgr(u)] u € R,

Hi(u) = {0 ueR, (13)
_ |sen(Sew)] u € R,

Hy(u) = {0 ueR, (14)

Here Sggr(u) and Sp(u) are the real part and the
imaginary part, respectively, of Sg(u) defined in
Eq. (10). Note also that the CTMF is characterized
by two ROS's, R, for the real part and R; for the
imaginary part. The resulting SNR is given as
follows:

SNRCTMF(Rh RZ))

2
[f [Ser(u)du +I ,Sp,(u)}du]
Ry Ry
= : (15)
J P (u)du + I P.(u)du
R; Ry

It may not be obvious initially how Eq. (15) can be
made to look like Eq. (7). However, it is possible.




For this effect, let us define ti:e following sequences
of length 2N (8192 in our example).

x, = 1SueiAu),
X.x = |Sutiduw),
y. = P,({Auw),
Yoox = Pidu), i=12,...,N. (16)
Using these definitions, we can determine Rémr by
Rirwr = {i(x./y) 2 T}, (17)

where T is a threshold tc be determined. Since the
index 1 in Egs. (16) can take on .alues from 1 to 2N,
all integers from 1 to N in R&tur correspond to RY,
and the remaining integers from (N + 1) to 2N in
Rérue correspond to Rs. This completes the deter-
mination of the optimal ROS for the CTMF.

In summary, we have presented rigorous al-
gorithms for designing the optimal ROS’s for POF'’s,
BPOF’s, and CTMF’s in the presence of colored
noise. These algorithms involve the sorting of ra-
tios (of s:gnal Fourier-transform-related quantities
to noise j-ower spectral densities) and the testing of
all possit le thresholds (the number of thresholds de-
pends on the number of bits used to express the ra-
tios) to 1.nd the best ROS.

-1
8
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Most previuus research into the design of correlation filters considered only input noise and filter spatial light
modulators (SLM’s) of an implicitly assumed infinite contrast ratio. We introduce a signal-to-noise ratio that

also includes correlation-detector noise and finite contrast SLM's.

Filters maximizing this signal-to-noise

ratio exhibit saturation at some frequencies and are called saturated filters. We accommodate SLM's whose
amplitude has a finite maximum and a nonzero minimum. We give algorithms for optimum saturated complex-

and real-valued filters. Previous results a:e reproduced as various limiting cases.

The phase-only filter

and the binary phase-only filter are limiting cases for large detector noise with, respectively, complex and real

modulators.

1. INTRODUCTION

Noise 1s always present in the correlation-detection pro-
cess, even if its major component is no more than the
quantization of the detected correlation. Nonetheless,
there is little to be found in the literature regarding the
effects of that detection noise on the performance of an
optical correlator. All else being equivalent and if all
noise were additive in the input plane, multiplying the fil-
ter by a constant would have no effect on the relative
amounts of signal and noise in the correlation plane. (We
will say that filters have the same shape if they differ
from each other only by a possibly complex constant fac-
tor. The magnitude of that factor will be called their rela-
tive size) Increasing the size of a filter seems likely to
produce an improvement in the detected correlation.
Thus it is common practice in optical-filter computation
to scale a calculated filter so that its maximum magnitude
is just at the saturation level. (We will say that a filter is
saturated if magnitude limitations have changed the
shape of the filter) The shape of the marginally satu-
rated filter is not modified; and if there is no detection
noise, the signal-to-noise ratio (SNR) is not affected. In
the presence of detector noise, though, the SNR can be
improved on by getting an increase in the power to the
correlation detector. The price is a loss of spectral
matching between the filter and the signal. We adapt our
metric of filter optimization to include the noise in corre-
lation detection, and we quantitatively balance the loss of
signal-detection selectivity with the increase in power to
the correlation detector.

An ideal passive-filter spatial light modulator (SLM)
would be controllable so as to transmit any specified mag-
nitude between zero and unity. In this paper we scale the
noise 1n the correlation-detection plane so that we may

consider the maximum transmittance as unity; this will
have no effect, of course, on the zero at the other end of
the control range. In reality, programmable SLM's have
finite dynamic range, so there is a finite minimum trans-
mittance. The practical effect is that all the frequency
plane passes noise that is additive in the input plane,
if only at that minimum transmittance. The effect on
the SNR is obviously detrimental. We include mini-
mum transmittance when calculating optimum saturated
filters.

A phase-nnly filter (POF) is fully saturated ab :nitio.
The POF was introduced by Horner and Gianino! to im-
prove the light-throughput efficiency of classical matched
filters. However, the all-pass nature of the conventional
POF’s results in extreme noise sensitivity.” One way to
improve the noise tolerance is to set the filter magnitude
at select frequencies to zero. An algorithm for determin-
ing the region of support (i.e., the set of frequencies for
which the filter magnitude is nonzero) for these optimal
POF’s was presented by Vijaya Kumar and Bahri for con-
tinuous® and binarized* POF’s with additive white input
noise. More recently, we presented theory® and simula-
tion,® including additive colored input noise, in determin-
ing the optimal regions of support for POF’s, binary
POF’s, and complex ternary matched filters.” For simple
detection problems, (i.e., when we need to detect the pres-
ence or absence of a known reference signal in additive
noise), the POF optimal region of support was observed
typically to consist of mostly low spatial frequencies.
Such small areas of suppor* end up hlocking much of the
light that is incident upon the frequency plane, thus lead-
ing once again to a low level of light throughput. Owing
to the optimal POF’s passing predominantly low frequen-
cies when recognizing objects containing high frequen-
cies, the correlation peak tvpicallv 1s broad
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Low hght throughput 12 not an issue if the detectors
placed in the correlation-output plane have zero noise and
or arbitrarily large gain.  When detectors have limited
gain and introduce noise, we must ensure that we send as
much light to the detector as pussible while providing tol-
erance to noise in the input scene. For the already satu-
rated POF’s, this necessitates increasing the area of the
region of support bevond what is the optimal choice from
solely an input-noise-tolerance consideration. For other
filters (complex."real * coupled ™) that take on zero val-
ues without separate consideration of a region of support,
the equivalent is to drive more of their area into satura-
tiun In those actions the spectral shape of the fiiter is
changed, with an adverse effect on the SNR if only the
input noise is considered. In this paper we will discuss
making the trade-off between tolerance to input noise and
tolerance to detector noise. We explicitly include the fact
that a minimum exists for the realized filter amplitude,
which also changes the shape of the filter from the calcu-
lated ideal.

The rest of this paper is organized as follows. in
Section 2 we introduce a simple SNR model that includes
detector-noise effects. In Section 3 we derive analytical
expressions for the optimal filters. We show algorithms
for calculating the filters, including for determining the
portions that are driven into either high or low saturation.
In Section 4 we show the limiting forms of the filters for
arbitrarily large and small noise and for arbitrarily large
and small contrast ratio. Section 5 is a discussion. We
do not present numerical simulations, since we show ana-
lytically that our filters are optimal with respect to our
stated measure of the SNR and because the SNR benefits
of the saturation will vary from case to case. OQur al-
gorithms will permit an investigator to determine any
benefit for his own situation.

2. DETECTOR NOISE IN
SIGNAL-TO-NOISE RATIO

Let s(x) denote the reference image (we will use one-
dimensional notation for simplicity), and let S(f) denote
its Fourier transform. Let H(f) denote the complex
transmittance of the filter placed in the frequency plane
of a frequency-plane correlator. In the absence of input
noise, the resvlting correlation output at the origin is
given by

«0) = [ stnHNA, M
where the limits of integration are those implied by the
bandwidths of S(f) or H(f) (whichever leads to the tighter
limit). These implicit integration limits will be observed
throughout the paper.

A model for possible uncertaintiss in the input is the
additive noise n(x). We model this as a sample realization
from a wide-sense stationary random process with mean
u., and power spectral density P.(f). The additive noise
n(x) in the input leads to randomness in the output c(0).
We can easily show that, when signal s(x) is present in the
input,

EletOn = w. HIO) + fsmmndf. 2)

Vigava Kumar er gl

variciOr, = | PafyHofy df. 13y

When the input to the correlator is only noise ntx), the
output ctQ) will be a random variable with mean u,H(0)
and the same variance as in Eq (31 For good detection.
we need to separate the two means as much as possible
while keeping the variance small. A convenient measure
for this is the SNR that 1s defined below, and we will
shortly present our motivation for using it:

l [ S(f)H(f)d/“;

SNR = :
j P.FH(S

(4)

In the past, optimal choices of H(f) [in the sense of maxi-
mizing the SNR in Eq. (4)] have been found within the
constraint that the filter be phase only; binary phase
ordy.! or real® Since a constant factor times the magni-
tude of H does not affect the SNR in Eq. (4], these opti-
mizations did not consider the finite nature of modulator
amplitude. The numerator has been maximized if mag-
nitude and phase are cross coupled.”®"

When the correlation output c(0) is detected by a
photodetector, several things happen. Detectors respond
only to |c‘'?, thus ignoring all phase information. Also, the
detectors introduce a gain and some noise. An accurate
model for detector noise is complicated and must include
the signal-dependent nature of detector noise. Instead,
we use the following simple model for y, the detector
output:

y =c(0) + ngy. (5)

In this detector-noise model, we assumed that the de-
tector gain is unity and that the detector noise n, is addi-
tive, without loss of generality. The noise ny is assumed
to have mean u4 and veriance o4’. We assume that the
detector-noise characte-istics have included within them
the scale factors that are appropriate to the correlator
whose optiraal filter is being calculated. For example, the
power of the correlator’s coherent light source might di-
rectly multiply the amplitude of the encoded signal trans-
form, so that increasing the light source power would
increase the SNR if ¢,? included only local detector noise.
Instead of treating those considerations explicitly, we
wrap them into the definition of detector noise.

The additive-detector-noise assumption is somewhat
questionable. However, it makes the analysis tractable
and helps us to illustrate our main point (i.e, that we
must trade off input-noise tolerance for detector-noise
tolerance).

We will now find the mean and the variance of y in
Eq. (3) for the two possible input cases. We will assume
throughout that the input noise and the detection noise
are statistically independent.

When the input contains only noise n{x) (hypothesis
H,), the mean and the variance of y are as below. Note
that H, and H(0) have different meanings. The former is
the null hypothesis, and the latter is the filter at zero fre-
quency:
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EivH! = ps o+ Ec(0)Hy)
= ug + uH(O), (6)
\'ar{‘\' 1\.1\”l = ”c‘: + var{c(())'}[‘,}

(7._.-2 + I}’n(f)\}l(f) "d/- (7)

When the input contains signal s(x) corrupted by additive
noise ntx) (hypothesis H;), the mean and the variance of
v are

EUHY = e+ w HO + [ SOOHpNS, 18)

var{y H}} = 0% + JP,.(f)]H(f)]“df. 9)

Using the statistics in Eqgs. (6)-(9), we can express the
SNR 1n the presence of detector noise as

|E{ylH\} - E{y|Ho}!®
1/2(var{y|H,} + var{y|H})

‘ | S(f)H(f)d/i

ot + [ PAPIH(Iaf

SNR

(10)

The only difference between the SNR's in Eqgs. (4) and
(10) is the extra ¢4? in the denominator of Eq. (10). How-
ever, this makes the optimal filter choices for the two
SNR's different. When o¢4° is small [compared with
J P.'H(f).*df), the two SNR’s are identical, and previous
optimal filters will still be optimal. In another limiting
case, when ¢,” is large [such that we consider only the o,

term in the denominator of Eq. (10)], the SNR is propor- .

tional to ' E{c(0)}]%, and we must simply maximize the cor-
relation value at the center. In Section 3 we provide
expressions for H{f) that maximize the SNR in Eq. (10)
for intermediate cases.

3. ANALYTICAL EXPRESSIONS

We established earlier the equivalence of the discrete and
the continuous formulations for the optimal filters (see
Eqgs. (16) and (28) of Ref. 9], and for convenience we now
switch to the discrete representation. H(f) becomes
H,, P.(f) becomes P,,, the region of integration becomes
the obvious summation range, etc.

We consider filters realized on two different types of
SLM: fully complex and real. In this section we will
determine the set of H,’s that maximizes the SNR in
Eq (10). We will use the amplitude A; and the phase ¢, of
the reference-signal transform S,:

S: = A, exp(jdu), 0<d, <27, 0< A,. (1

We wili use the magnitude M, and the phase 8, of the fil-
ter H,:

H, = M, evp(y8,, 0 <8, < 2=,

0< M <1 (12)

~1

N

Voo NG D Mardh b Do N0 Am A 07
Even before they are expressly known, we will have re-
peated use for the amphitude, B, and the phase. g, of the
central value of the filtered sipnal. We will refer to g8 as
the output phase

Bexpup = N S H,. 0=« <25 0« B (13

In these terms, if we let Af be a unmiform samphng interval
in the frequency plane, the SNR becomes

Af? ESkal_
SNR = : =

Ud2 + Af E PaM? (042/-3f2) + E (Pnr/-\f)AM.?
3 B

B‘.’

(14)

From here on, we will assume that the detector noise and
the input noise power spectral density are normalized to
the sampling frequency interval as indicated in Eq. (14).
In determining the filters, we will explicitly use

0<Dpn<sM<Dp,<1, (15)
expressing the finite limits of the amplitude (not the in-
tensity) transmission of a passive filter. One sees that
the value of D,,, in Eq. (15) can be included with the
previously mentioned scale factors in the definition of
detector-noise variance. Thus we will use the following
equation for the filter-magnitude limitation:

P < M‘ = l, (16)

where
— Dmll‘l. 17
P=7 a17)

In this equation p is Dpn/Duax, the reciprocal of the
amplitude-contrast ratio for the filter SLM.

Our approach to finding the optimum SNR begins with
specifications that produce stationary values for the SNR.
If we have a filter that produces a maximum SNR and if
we make small changes in the unsaturated portions of the
filter, no first-order change in the SNR occurs. The
method is explained more fully in our earlier work, where
variational calculus'®' and partial differential equations®
are used. The statement of stationarity leads to a search
on only a limited set of SNR's, among which exists the
globally optimum one.

A. Full Complex Filter
Let us allow H, to take on any complex value on or within
the unit circle. The phase and the amplitude of the filter
may be independently determined. Clearly the numera-
tor in Eq. (14) is maximized by matching the phases of
reference-signal transform and filter (i.e., their sum is a
constant), and the denominator is not affected by the
choice of filter phase. So our first action to maximize the
complex filter s SNR in Eq (14) is to choaze its phase by
6, + &, = const

118)
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The complex filter’s amplitude remains to be found  The
selection of the filter’s phase by Eq. (18) leaves the now-
real-valued equation to optimize for the complex filter’s

SNR,
();A‘MA)"
SNR = —F
a4+ antMﬁ

(19

We must choose the set {M,} to maximize the SNR subject
top < M, < 1. If we are examining the optimality of the
SNR by the choice of M at the mth frequency, then it must
be the case either that M., is an extremum of its allowed
values or that the SNR is stationary with respect to the
local choice of M,,. The condition of stationarity is

#SNR
aSNR _

M. (20)

If this condition produces a value p < M,, < 1, we accept
it. Otherwise one extreme value or the other is neces-
sary. When we take the partial derivative in Eq. (19),
dSNR

aM,,

2
(o‘d"’ + E Pnb.Mk?)2(2MkAk)Am - (2‘"“4*) 2M, P.n
[ ¢ .

2
(Odz + 2 P,.kM.‘Z)
&

(21}
and the derivative will be zero if
0‘42 + ZP,.AMAz
M, = An —_— (22)
" P’Iﬂl

szAk
[

The term in parentheses is a constant with respect to the
frequency index, since that index is summed over. Thus
we may express it as a constant, G. Then,

A
M., =—0G, 2
Mn = P @3
and we have defined the optimizing gain, G. In other

words, for those frequencies at which the filter is not satu-
rated, the magnitude of the filter is proportional to A/P,.
The gain will cause saturation of the filter at some fre-
quencies. It is crucial to note, however, that the defini-
tion of G explicitly includes the participation of the
saturated frequencies; it is an equation, not an expression
of proportionality. We do not have the freedom to multi-
ply a filter by an arbitrary scalar, as may often have been
done in the past, to get a calculated filter somehow to fit
within the physical limitations of the modulator on which

the filter is to be expressed. If
Am
G 1 24
P > 1, (24)
then it may be easily verified from Eq. (21) that
aSN
-_SR>0in 0<M, <1, (25)
oM.,

76

and thus the SNR reaches its maximum tby choice ot Mo

at M., = 1. . conversely.

LA ‘
G P.. i 26
then. similarly,
BAR <0 M, =1 i
;’Alm - m o p = m =1 [P

and the SNR is maximized by M. = p
Defining a symbol for the saturated value allows
a shorter form to be used for M,. Presuming that

0<ac=x<b,
{{x}} = sgn(x) x max{a, min(b,ix))]. 128)
We may now write
ALY
Mo = “"p—}} - =

where G is yet to be determined. For any candidate value
of G, Eq. (14) expresses the realized SNR.  We will shortly
present the scheme to search on G for the globally opti-
mized filter. For now the important point is that, where
the optimal filter is not saturated, its magnitude 1s pro-
portional to A/P, (the phase has already been given).
That the unsaturated portion of the optimal filter holds
its shape is certainly a significant point, and it is not
obvious.

We now know everything except the globally optimizing
value of G. We can obviously limit the search between the
values that would just saturate the largest and the
smallest values of A/P,. We now develop our search
strategy. We show one method guaranteed to find the
globally best gain, and we show another method that may
reduce the size of the search.

In finding the globally best gain, we have two routes
that we may pursue. The first uses the knowledge that
the optimizing gain will just saturate the filter at a particu-
lar value of A/P,. We will call the filter gain selected
according to that criterion G,. The second route requires
that, once a gain is known, Eq. (23) also be met if the SNR
is an extremum. We will call the gain that is calculated
from that equation once a filtcr is selected G,.

We use a previous result® that showed that, when a filter
is optimized by choice of the region of support, all the fre-
quencies having equal values of A/P, are included as a
block. Thus we first sort the N frequencies so that

A A A

2 =2 2
Pnl Pnr Pmul

v

\
!
v

Ax
>
Pn.\'
(30)

For the moment, r and i are arbitrary, except that each is
adjacent to an inequality in the sequence, as indicated.
We now pick the rth frequency as the one to be just satu-

rated high; we denote by G, = G,(r) the gain that just
saturates the rth frequency:
P,.
G, = =
A (31)

The region R, is those frequencies that saturate high ti.e.,
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for which ¥ = r). Similarly R, is those frequencies for
which saturation does not occur (r < k < 1), and Ry is

those frequencies that saturate low (k = 1). The ratio pis
seen to induce the relationship between r and 1: ¢ is the
smallest 1index value such that
A, A,
> — (32)
°p. ” P.

Of course, if the signal amplitude is so high at all frequen-
cies that the condition in inequality (32) is not met, then
no frequencies are saturated low, and R; is the null set.

We therefore have the following algorithm for the opti-
mal saturated complex filter:

Given A,, ¢4, Pui, p, and 0%,
(1) Form the sorted A,/P.;; suppose that this takes
on L levels.

(2) For each !/ in 1 < { < L, calculate the just-high-
saturating G, as :

Pnl
G, =—=- 33
Sy (33)

Set the M, according to

A 1
N

Calculate the SNR, according to

2

[ZAh +G J(AYP) + p EAk]
SNR‘G}) = & RI ﬂj ,

aqd + ZPnb + G? E(Atz/Pnl) +p° EP..I.
Ry Ry Ry

(35)

where

R, is a set of frequencies for which M(f) = 1,
R; is a set of frequencies for which p < M(f) < 1,
R, is a set of frequencies for which M(f) = p.

(3) Among the L SNR's, pick the highest. Equa-
tions (33) and (34) then give M,", the amplitude of the op-
timal constrained complex filter.

(4) Within an arbitrary phase constant, the optimal
filter is then H,* = M,"* exp(—jds).

(5) Obviously, in the continuous case, A /P, may take on
a continuum of values. Evaluate the SNR from assuming
a sufficiently fine discretization, A, /P.,, to exhibit its
functional effect on the SNR, and determine the optimiz-
ing threshold value.

If the gain G = G, is to produce the optimum SNR,
then the requirement on gain shown in Eq. (23) must be
met. We denote by G, the gain that meets Eq. (23) for the
gain G, currently under consideration; if G, = G,, we
have a candidate for the gain of the globally optimized fil-
ter. Explicitly showing the partition of saturated and un-
saturated filter values, the value G, that meets the
stationary SNR requirement is

0 + D Py + G I (AS/PY+ p' I P,
" R,

R.

(I‘g = (36)

ZAA + G, Z(Aaz/Pu' > p EA.
A

K R:
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which easily reduces to

ol + ZP“ + p? Zl’m
LB K. oy
e (37)

NA +p EA,
R K.

G, =

There may be a benefit to calculating the optimum filter
on the basis of the behavior of G, as a function of G,: see
the discussion in Section 5. G, is explicitly needed in a
consistency check on the output phase 8 for the optimum
real filter, as follows.

B. Real Filter .
As in the case of the complex filter, we assume that the
detector noise is so scaled that the maximum amplitude of
the filter is unity. From Eq. (12), we can express a real
filter on ~1 < H =< 1 by taking the phase o1 the filter, 8§,
to be zero or = and its amplitude tobe p < M < 1. In
calculating the optimal complex filter. in the frequency
plane we locally matched the filter's phase to that of the
reference object. The real filter does not have that flexi-
bility of phase adjustment. In calculating the optimal
real filter, we will see that the equivalent of the complex
filter’s phase matching is taking the projection between
the signal transform’s local phase and the output phase of
the filtered signal, B, from Eq. (13). In addition to discov-
ering an optimizing gain, G, we must discover the correct
angle B. Our development is similar to that in Ref. 9,
where more details are presented.

Equation (14) gives the SNR. In the present case H, is
real, thus we do not locally match phase, and our SNR
becomes

> A exp(+jd>.)Hk] [EA, exp(—dn)Hz]
SNR = — :

ol + Y P.H?
X

B2
=— (38)
od:’ + anthz
&

where we have used the definition of B and 8 in Eq. (13).
Taking the partial derivative of SNR with respect to H,,,
the filter value at the mth frequency, and setting it to
zero, we have

2H,.P,.,.,Bz = (0d2 + ZPnhth)B[Am QXPj(d)m - B)
]

+ A, expj(B — d.)]. (39)
This reduces to the form
A 1
H. = {{GP” cos(d. — B)]} ) (40)

in which G is defined similarly as before,

ast 4 ZPMHAZ
G= ——* . (41)
S A, exp(jde,. 2

Just as for the complex filter, the two expressions for G

|
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must be consistent. A significant difference arises. how-
ever. In Eq. (40) we see both the output phase, B, and the
gain, G As we will see, the saturation effected by a given
value of G interacts with the value of 8in a manner differ-
ent from that in Ref 9

Again, we begin by sorting frequencies according to
expression (30) and search on the L different gains that
saturate at the L distinct levels in the sequence. G, =
G,il) is taken as the gain that will marginally saturate the
{th distinct value of Ay/P.s:

Pu

G, ==
A

42)

As in inequality (32), the chosen value of gain partitions
the ordered frequencies into R, (saturated high), R; (un-
saturated), and R; (saturated low). Inserting the gain
into Eq. (41), we obtain
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Then the numerator in Eq (45) becomes

~ )+ p ¥ (similar)

Ay

zA. SIN(ds
Ry
1
= YA, EJ‘{PXPU"L‘). - B)] - exp[-jlde - ]}
Ry

+ p 2 (similar)
Ry

_ exp(-JB)
T

expl+JB)

A, expl+ o) — 2

x 3 A, exp(—jdu) + p 2 (similar)
r, A

1 _ . . )
=% [exp(—JB)E exp(+ je} ~ exp(+ JB)E exp(~ je)]
= E sin(e - B8). (50)

0 + 3 Pu + G 3 (A3/Pu) cos’du — B) + p* 3 P -
Ry R, R;

Gb =
exp(—jB)| 3 A exp(ds) + Gs
Ry

Ry

> (Ad/P.expljdi)cos(ds ~

» (43)
B) + p 3 A, expljd.)
Ry

in which we have attained the absolute value in the de-
nominator of Eq. (41) by multiplying by exp(—jB). With
some effort we can solve for G, as a function of 8. First
we carry the exp(— jB8) into the other terms in the denomi-
nator. Then, cross multiplying and equating the real
parts results in

g+ 2 Pu+pt 2 Pu
R, Ry

Gy = (44)

REA‘ cos(dy ~ B) + p RZA‘ cos(¢s ~ B)

Equating the imaginary parts produces another equation
for G,:

S Assin(ds - B) + p nEA. sin{¢s ~ B)
R, 3

G, = - (45)

2 (A/Pu)sin(éy ~ B)cos(¢s — B)
Ry
We in turn equate these expressions for G,. By applying
well-known trigonometric identities
exp(+ jx) — exp(—jx),
2

sin x cos x =

sin 2x
—

sin x cos x = (46)

etc., we will isolate B8 in two expressions, one for sin(28)
and the other for cns(28). Their ratio gives tan(28).
First we will require some definitions. We define F*, E, ¢,
@?, and q as functions of the gain G, and the ouiput phase
B being investigated. Recall that G, and B induce the
partition of frequencies into R,, R,, and R;. Let

Flz= 0.+ 3 Pu+p?3Pu, (47)
R; Ry
Eexp(je) = 3 Ay exp(ds) + p Z:A' exp(jds), (48)
Ry 1
: 2
@ explizg) = 3 LA =xPUST. (49)
R, nk

In like manner, the denominator of Eq. (44) becomes

D Avcosids — B) + p 3 As cos(dy ~ B)
Ry Ry

= E cos(e — B), (51)

and the denominator of Eq. (45) becomes

A2
2 — sin(¢s — B)cos(d, — B)
7 P

A1
= g .3 sin(2¢, ~ 28)

111
T 212

-le +2B)2£exp(-2'¢ )]
2% xp(+2, £ P, jdn

2
‘%— exp(+2jd,)

exp(—2jB) RZ

= -%Q’ sin(2q - 28). (52)

Equating the two expressions for G,, we have
F2
E cos(e — B) -

_ Esin(e - B) (53)

2Q* sin(2q - 26)

Using the trigonometric identities from Eq. (46) and doing
some minor algebra, we then have

sin(28)[E? cos(2¢) + F?Q* cos(2q)]
= cos(2B)[E? sin(2¢) + F’Q?sin(2q)], (54)

and we have this expressinn for 8:

E? sin 2¢ + F*Q’sin 2q

tan 26 = E? cos 2¢ + F?Q* cos 2¢

(55)

Unfortunately, although to superficial appearance B has
been separated as we accomplished in Ref. § we cannot
use this equation to calculate 8. The difficulty is that g8
appears in Eq. (40). Its influence follows into the defini-




Vigsva Kumar er af

tions for F, E, etc, in Egs. (47)-(49) and thence into its
own expression in Eq. (55). The utility of Eq. (55) i1s as a
consistency check; the optimum SNR saturated filter
will produce the same value for B as was originally used
in Eq. (40). [Equation (55) also serves in the limiting
analyses in Section 4.] The equivalent consistency check
for the gain is that G, = G,. We are ineluctably led to a
two-dimensional scarch on G and B for the optimum SNR
real filter. Except for searching on two parameters
rather than one, the order-N algorithm for the optimum
real saturated filter is virtually identical to that for the
matched filter, with the substitution of the cosine term
for phase matching. Having candidate values for G and
B, we calculate filters from Eq. (40) and then the SNR
from Eq. (38)

We may be able to simplify the search for the optimum
value of G by observing G, from Eq. (44) or (45). When
Gy, = G, we have an extremum SNR. See the discussion
in Section 5

4. LIMITING FORMS -

Complex; small detector noise, infinite contrast. Con-
sider the effect on Eq. (19) if 0,2 = 0 and p = 0. The
equation becomes

&

. SNR = (ZA‘M.) :

(56)
2 PuM?
2
Setting to zero the partial derivative of the SNR with re-
spect to M,
A 1
M, = “Git o 57
{{P,.,., } ]o e
we may choose any G, such that
.| P
< —1 58
G =< min [A,] (58)

to hold the shape of the filter. In that case, we have
(within an arbitrary phase constant)

H -G ﬁi exp(~jdbn), (59)

the classical matched filter.

Complex; small detector noise, finite contrast. 1If
p # 0 but 0,2 = 0, Eq. (19) becomes
A !

o= {{7zo}}. w

where G is from Eq. (37) with 0,2 = 0. As before, we are
assured of the optimum SNR if we try all G's having
values

0

r

G.r) = .
(r) A

(61)

and finding G, = G, may be a shortcut.
result

This is a new
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Complex; large detector noise, any contrast. Equa-
tion (19) becomes
2
(34m)
SNR = ~——5——, (62)
a4
which i1s maximized by choosing M, = 1 for all &. By
Eq. (18) we have
H, = exp[—j(¢s + ccast)], 63)
the POF.
Complex; any detector noise, unity contrast. Equa-

tion (29) shows that all filter magnitudes are unity, and
Eq. (18) produces the POF.

Real;, no detector noise, infinite contrast.
tion (40) is met by using any choice of G such that

Equa-

PnA)
G < min|—]- 64
m‘m( ™ (64)
This is the case we developed earlier.’

Real; infinite detector noise, any contrast. Consider

Eqs. (40) and (41). As 0, becomes large, it dominates in
Eq. (41) and causes M,, the magnitude of H,, to satu-
rate high. The sign of H, is the same as the sign of
cos(¢, — B). We have a bipolar filter regardless of the
value of p. The polarization occurs with respect to the
output phase B, which we can obtain from Egs. (40), (41),
and (47)-(55) by the following observations. As o4? be-
comes large, F? becomes large. The first thought is that
B would tend to ¢ x nnf/2 (n = 0,1,2,...) from Eq. (565):

2 o 22 ;
E® sin 2¢ + F*Q* sin 2¢q

2 =
tan 28 E? cos 2¢ + F?Q% cos 2q (F—m)

tan 2q. (65)

However, as o4’ grows, regions R, and R; shrink to the
null set and Q? becomes zero short of an infinite value for
04>. Thus F?Q? also becomes zero short of an infinite
value for o.%. Since R, and R; become null, R, becomes
the universe of frequencies, €}, and Eq. (48) becomes

Eexplj) —= SAi exp(jtn). (66)

log"—=)

Then we see that the correct limiting value for 8 is ¢, the
phase of the signal averaged without regard to input
noise:

tan 28 — tan 2¢ (67)
tog"—=)
or
B — ar zA.exp(jm)]:nzv n=012....
(0g?—=) ) 2
(68)

The extremum solutions for which n is odd produce min-
ima; compare with the discussion in Ref. 9 in the vicinity
of its Eq. (21). Within an inconsequential factor of +1.
then, we choose n = 0, and our limiting-case real filter is

H., =

sgn{cos(d. - B)]. (69)




ERR J Opt Soc Am A Vol 9 No 3 March 1942

5. DISCUSSION

Practical and programmable SLM’s have finite contrast
ratios. The effect of a finite contrast ratio is that regions
of th.. frequency plane where little signal energy exists but
where nowse power is appreciable can nevertheless not be
turned entirely off. Most objects that are likely signals
to be detected by correlation do not distribute their en-
ergy widely in the frequency plane. This situation lends
force to our accommodating the modulator’s finite con-
trast ratio when optimizing the SNR of the filter.

The effect of considering detector noise is to push the
magnitude of a filter upward into saturation. The shape
of the magnitude of the filter is then not matched to that
of the signal. One wishes to send more processed light
through the filter to dominate the detection noise. We
have presented analytic algorithms that balance the SNR
loss owing to deteriorated shape matching against in-
creased total-light throughput of a filter in such a fashion
as to maximize our stated SNR. We showed that the _n-
restricted attempt to increase light throughput (viz., the
POF) is optimal only in certain limiting conditions.

In the case of the real fiiter, we have shown that we
include the projection of local phase onto the phase of the
filtered signal [see the cosine term in Eq. (40)]. We
showed that we are generally unable to obtain the value of
that filtered phase before calculating the filter itself, as
had been done earlier,’ so a two-dimensional search is
necessary.

There is a pleasing symmetry in the forms of Egs. (31),
(37), and (44). G, is determined as the local noise-to-
signal ratio in the frequency plane, and G, is the global
noise-to-signa! ratio (including the detector noise) for the
noise power and the signal amplitude passed by the satu-
rated parts of the filter. One has the sense that, in re-
taining the matched filter’s shape, the unsaturated
portion of the filter contributes the most that it can to
noise reduction and that, when we find the correct levels
at which to saturate the filter, we have balanced tl.. local
and the global noise tolerance. One has the same sense
with the real filter, in which we locally weight a filter
magnitude according to how well the reference-signal
transform’s phase lines up with the phase of the reference
object as finally filtered. In each of those two cases we do
local calculation of filter values so that the global SNR is
maximized.

We gave algorithms that are guaranteed to produce the
globally optimum saturated filters. The algorithms run
in order-N time, where N is the number of frequencies at
which to obtain filter values. We suspect (but have not
yet shown) that the problem is reducible to at most an
order-log, N search. Our reasoning is as follows.

At most N values of G, are possible. The optimum
SNR achievable is stated . a function of G, without the
need to calculate the full-f.lter values and then the SNR
from Eq. (14). The sums in Eq. (35) do not have to be

s

wholly recaleulated tor each candidate value of G 4.t
quency elements move from one region to another and tr..
sums can be appropriately adjusted.  Next we showed how
G. is calculable strajghtaway without the necessity oo
going through the computation of the SNR. The globain
optimum choice of G, is characterized bv . = (7, 0 7
that equality holds for the G, under consideration. we
have a candidate for the optimum filter. We thus may
eliminate the filter and the SNR calculations during the
search by observing G, as a function of G,. Certaimnly G _
1s a monotonic function of r (the index of the first high-
saturated frequency). If, as we suspect, G, has the uppu-
site monotonicity, then a binary search on r for G, = G.
suffices, and we have at most an order-log, N search. We
further suspect that, in most practical instances. good be-
havior of GG, and G, will further reduce the number . f dif-
ferent saturating thresholds that we must evaluate.
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A performance measure called the peak-to-correlation energy is used to characterize the sharpness of correlation
outputs. This measure is then used to determine the phase -only filter with maximally sharp correlation peaks.

Phase-only filters (POF’s), originally introduced by
Horner and Gianino,! have been thke focus of much
recent research. We were able to prove? that the
POF’s introduced by Horner and Gianino are indeed
optimal in the sense that they yield the maximum
signal-to-noise ratio (SNR) of all unit-modulus filters.
A ), we can increase the ou’ ut SNR (by ~3.5dB in
the cases that we tested?) by allowing the filter magni-
tude to be zero at some frequencies. However, the
SNR measures the tolerance of the filter to noise in the
input image and does not measure the sharpness of the
resulting correlation output peaks.

Several measures have been proposed to character-
ize the correlation-peak sharpness. Although these
measures are good at distinguishing sharp peaks from
broad peaks, their formulations preclude us from the-
oretical analyses. The notable exception is the re-
search of Dickey and Romero,® who use the special
properties of prolate spheroidal functions to show that
the POF’s introduced by Horner and Gianino are also
optimal from considerations of peak sharpness.

In this Letter we introduce a peak sharpness mea-
sure that we call peak-to-correlation energy (PCE).
The PCE turns out to be a special case of the more
general peak sharpness measure introduced in Ref. 3.
However, the PCE is much easier to use than the
measure described in Ref. 3. First we show, using a
simple proof, that the conventional POF maximizes
the PCE among all unit-modulus filters. Dickey and
Romero® proved a similar result, using analysis involv-
ing prolate spheroidal functions. We then show that
selecting a proper region of support for POF’s can
incresse the PCE significantly.

Let s(x) denote the input image (we use one-dimen-
sional notation for convenience) and S(f) denote its
Fourier transform. Let H(f) denote the frequency
response of the correlation filter being used. The re-
sulting output, ¢(7), is the inverse Fourier transform of
the product H(f)S(f) and is given by

clr) = J " H(PS(Hexp2nfr)df. )

Ideally, c¢(r) should have a large value at 7 = 0 and
small values elsewhere. A convenient characteriza-
tion of this attribute is the PCE measure, defined as

le(O)”

PCE & ,
j le(+)2dr

(2)

where the limits of integration are from —« to +, [t
is easy to see that PCE attains its smallest value of zero
when c¢(7) = ¢(0), a constant for all 7. Conversely, the
PCE approaches infinity as ¢(:) approaches a delta
function. Thus, as desired, larger PCE values appear
to imply sharper correlation p:aks. However, the ma-
jor reason for using the PCE over other available peak
sharpness measures is its analytical convenience. Us-
ing Parseval’s theorem, we can rewrite the PCE mea-
sure as

S(}')H(f)dfr
PCE = a 3)

j ISOPH@PS

where a is a constant. It is easy to verify that the PCE
is maximized if H(f) = K/S(f), an inverse filter. Thus
it yields the expected result that the_inverse filter
produces the sharpest correlation peaks.

Next let us consider all unit-modulus filters, i.e., all
filters with |[H(H| = 1 for all f. Let ®s(/) and ®x(f)
denote the phases of S(f) and H(f), respectively.
Then the PCE measured is given by

[Islessilestn + QH(f)]Idfr

PCE = « (4)

] Is(pizar

The denominator in Eq. (4) is a constant for a given
s(x), and the numerator is maximized by using

QH(f) = _QS(f) + ¢, (5)

where ¢ is any constant. Thus the conventional POF
yields the maximum PCE among all unit-modulus fil-
ters. This result was proved in Ref. 3 by using a more
general measure, which required the use of a more
complicated analysis involving prolate spheroidal
functions. The resulting PCEpqy is given by
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[ |s</>ldf]2
PCEpyp = a7 ——— - ®)
f IS(df

It iz also reassuring to note that, like classical
matched filters, conventional POF’s yield correlation
peaks at origin in the absence of noise. The PCE
value for the classical matched filter! (CMF) is given

by
[ ] |S(f)|7d,r’]2

PCECMF = a .
J IS(Hl*df

(7)

It is interesting to see whether the POF always yields
sharper correlation peaks than the matched filter.
Toward that end, we form the ratio

o PCEpo;
PCEcue

[ | IS(D|df]2 [1star
) [1seoar [ | |s<n|2df]2' ®

It would have been satisfying to show that n = 1 for
any |S(f)l. However, the first ratio in Eq. (8) is always
greater than or equal to 1, whereas the second ratio is
always less than or equal to 1. Thus the product may
or may not be greater than 1. In the two images that
we tested (an image of a missile launcher and an image
of an aircraft), n was greater than 1.

As in the case of optimizing? SNR'’s, we can obtain
higher PCE values by allowing for some of the filter
frequencies to have zero magnitude. Let R denote the
set of frequencies for which the filter has unit magni-
tude. Thus, for frequencies in R, the phase is given by
Eq. (5), and the resulting PCE is given as follows:

[ | IS(f)ldf]z

]R SOl

n

PCE(R) = a 9)

We can show that the support region R resulting in
the highest PCE can be obtained by including all those
frequencies for which |S(f)] is below a threshold T.
We provide a proof for this statement in another pa-
per.> This threshold T is unknown beforehand.
Thus we try many possible T values and find the
corresponding support regions and PCE values. Of
these, the T value yielding the highest PCE is selected.
This yields the optimal PCE POF.

We investigated the advantage of using the optimal
PCE POF by using the 32 X 32 image shown in Fig. 1.
To ensure that our computer simulations used linear
correlations rather than circular correlations, we pad-
ded the 32 X 32 image with additional zeros to obtain a
64 X 64 array. A fast Fourier transform of size 64 X 64

[0 4]
[

is used to obtain the necessary signal Fourier-trans-
form magnitudes. These are then used to determine
the optimal support regions. For comparison pur-
poses, we determined the region of support for the
optimal SNR POF that maximizes” the output SNR.
The resulting regions of support are shown in Fig. 2.
In both parts of the figure the center represents the
origin (zero frequency), the dark regions are where the
POF is blocked, and the white regions represent places
where the POF is transparent. Note from Fig. 2 that
the SNR is optimized by permitting low frequencies
for this image, whereas PCE is maximized by blocking
low frequencies for this image. The intersection be-
tween the two regions of support appears to be empty.
Thus optimizing SNR and PCE appear to be conflict-
ing goals.

The input image energy is such that a noise variance
of 1 at the input is equivalent to having an input SNR
of 32.27 dB. The resulting output SNR and PCE
values for the CMF,* the conventional POF,! the opti-

Fig. 1. 32 X 32 image used for simulations.

(b)

Fig. 2. Regions of support vielding maximal SNR (a) and
PCE (b).
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Table 1. SNR and PCE Values for Various Filters®
Filter Type SNR (dB) PCE (dB)
CMF 68.39 16.00
POF 59.01 26.74
Optimal POF 66.60 13.71
Optimal PCE 49.67 33.55

7 Input SNR, 32.37 dB.

mal SNR POF,? and the optimal PCE POF® are shown
in Table 1. Note that the CMF permits magnitude
and phase variations, whereas the other three filters
have magnitudes that are either zero or unity. For
this image, the conventional POF yields SNR'’s that
are 10 dB lower than those obtained with the classical
matched filters. The optimal SNR POF is ~2 dB
lower in SNR than the CMF. The optimal PCE POF
is almost 19 dB lower than the CMF. However, in
comparing PCE values we note that the optimal PCE
is the best (33.55 dB), the conventional POF the next
best (26.74 dB), the classicial matched filter the next
(16.00 dB), and the optimal POF the worst (13.71 dB).
We assumed « to be 1in obtaining the above numbers.
By selecting the region of support optimally, we im-

July 15, 1990 / Vol. 15, No. 14 / OPTICS LETTERS 809

proved the PCE value by almost 7dB. Another inter-
esling observation is that the classical matched filter
outperforms the optimal POF in both SNR and PCE
measures. That is perhaps due to permitting both
magnitude and phase in the filter plane. Comparing
optimal POF and optimal PCE entries, we note that
the optimal PCE results in ~20 dB more PCE but 17
dB less SNR. Thus it appears that we have to trade
off noise tolerance for peak sharpness.

We acknowledge the partial support of this research
by Hanscom Air Force Base under contract F 19628-
89-k-0032.

References
1. J. L. Horner and P. D. Gianino, Appl. Opt. 23, 812 (1984).
2. B. V. K. Vijaya Kumar and Z. Bahri, Appl. Opt. 28, 250

(1989).

. F. M. Dickey and L. A. Romero, Opt. Lett. 14, 4 (1989).

. A VanderLugt, IEEE Trans. Inf. Theory IT-10, 139
(1964).

5. B. V. K. Vijaya Kumar, C. Hendrix, and W. Shi, “An
algorithm for designing phase-only filters with maximally
sharp correlation peaks,” Proc. Soc. Photo-Opt. Instrum.
Eng. 1296 (to be published).

o o




S

APPENDIX I

Partial information correlation filters with maximally sharp
correlation peaks

B. V. K. Vuaya Kumar, WEgr SH1 anp CHAaRries HENDRIX

Algorithms are derived for designing three partial information filters (phase-only
filters, binary phase-only filters and complex ternary matched filters) that result in
maximally sharp correlation peaks. The peak sharpness measure used is the peak-to-
correlation energy (PCE), which is the ratio of the square of the correlation peak 1o
the total energy in the correlation output. Several simulation examples are provided.
to enable a comparison of the correlations obtained by maximizing the PCE and by
maximizing the signal-to-noise ratio (SNR).

1. Introduction

While classical matched filters (CMFs) [1] provide the
highest output signal-to-noise ratio (SNR}), they have
not become practical mainly because of the following
problems.

(a) CMFs are extremely sensitive to small changes in
the reference images {2};

(b) CMFs require spatial light modulators (SLMs) cap-
able of representing complex-valued frequency res-
ponses [3];

2) CMFs attenuate the light because the filter magni-
tude is less than unity at many frequencies and this
results in low light throughput efficiency {4].

Several remedies have been proposed to alleviate
these problems. Composite filters [S-7] are suggested
for improving tolerance to distortions and phase-only
filters (POFs) [8] are proposed to increase light
throughput efficiency. Also binary phase-only filters
(BPOFs) [9] and complex ternary matched filters
(CTMFs) [10] have been proposed as filters suitable for
implementation on real-time SLMs such as the
magneto-optic SLM (MOSLM) [11].

POF, BPOF, and CTMF share the common feature
that all of them attempt to approximate the complex-
valued CMF. In that sense, they are partial information
filters. How well these partial information filters do the
job depends on the figure of merit we employ. In the
past, we have focused on the maximization of the
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Authors’ address: Electrical and Computer Engineering Department.
Carnegie Mellon University, Pittsburgh, PA 15213-3890, UJ.S.A.

output SNR [10, 12,13]. This led to filters that are
maximally robust to input noise.

However, another desirable attribute of the correla-
tion filters is that they result in sharp correlatior peaks.
In this paper, we use a recently introduced {14] peak
sharpness measure called peak-to-correlation energy
(PCE) to design POFs, BPOFs, and CTMFs resulting
in maximally sharp correlation peaks. We also include
some numerical results to illustrate the advaniages of
using such optimized partial information filters.

The rest of this paper is organized as follows. The
next section sets up the notation and provides the
necessary background. In section 3, we derive and
describe algorithms for designing partial information
filters that maximize PCE. These filters are tested and
results are presented in section 4. Out conclusions are
provided in section 5.

2. Background

Let s(x) denote the signal/image which is being
searched for and let S(u) denote its appropriate (1-D
for signals and 2-D for images) Fourier transform (FT).
We will use 1-D notation throughout for convenience.
but all our results apply to higher dimensions also.

2.1.  Classical matched filter

The classical matched filter (CMF) for detecting the
signal s(x) is given by

Houe(u) = 5" (u) )
=185 e 199, N
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vhere the superseript astenisk denotes the conjugation
ind [S(u)] and ¢(u) are the magnitude and the phase,
espectively, of S(uw). It 1s well known that the CMF
1elds the highest possible output signal-to-noise ratio
SNRj}. where SNR is defined as below.

B l[f{('((w
var {c(0))

)

vhere ¢()) denotes the correlation output at the origin
in the absence of noise, autocorrelation peaks at the
»rigin) and E{-} and var{-} denote the expected value
ind the variance, respectively.

The CMF in equation (1) is complex-valued and thus
‘equires two spatial light modulators (one for magni-
ude and one for phase) or use of computer-generated
10lograms (not attractive for real-time applications).
Thus, much effort has been devoted to designing spatial
ilters suitable for implementation on currently avail-
ible spatial light modulators (SLMs). Such filters
nclude phase-only filters (POFs), binary phase-only
filters (BPOFs) and complex ternary matched filters
‘CTMFs).

2.2.  Phase-only filters

The POFs originally introduced by Horner and Gianino
[8] are given by

Heop(u) = €719, 3

Because of their unit magnitude, POFs provide 100%
light throughput efficiency [4]. However, this also
means that all the input noise comes through unatten-
uated because of the all-pass nature of the POF [15].
Vijaya Kumar and Bahri [12] showed that the output
SNR can be improved if we allow certain filter frequen-
cies to have zero magnitude. Such phase-only filters
(which maximize SNR) were called optimal phase-only
filters (OPOFs) and can be expressed as below.

—19(u)
e IO“’

f ueR,

0, if u¢R, )

Homr'(“):{

where R (called the region of support) indicates which
frequencies have unit magnitude in the filter. Vijaya
Kumar and Bahri [12] provide an algorithm for deter-
mining this region of support.

2.3.  Binary phase-only filters

Phase-only filters cannot be implemented on available
SLMs such as the magneto-optic SLM (MOSLM) {11}
which can be used as either a two-level (—1 and +1) or

a three-level (1.0 and +1) device {16]. For this
reason, binary POFs (BPOFs) of the following form
received much attention.

Hypor(u) =sgn [Sp(u) cos B+ S (w) sin ], (5)

where Sy(u) and S,(u) are the real part and the imagin-
ary part, respectively, of S(u), 0=4<(n/2) and

+1, if x=0,

o=l L ©

Many of the BPOFs proposed are special cases of the
general BPOF in equation (5). Using 8=0 yields the
binarization of the real part [9], B=mn/2 yields the
binarization of the imaginary part [17] and 8==n/4
yields the binarization of the sum of the real part and
the imaginary part {18] (this sum is the same as the
Hartley transform {19] of the original signal). As in the
case of POFs, we can increase the achievable output
SNR by using the optimal BPOF (OBPOF) defined
below.

Hgpor(u), if ueR,

0, if u¢R. 0

Hogpor(u) = {

Vijaya Kumar and Bahri (13} proposed an efficient
algorithm for finding R so that the output SNR is
maximized. In the examples tested, using an optimal R
improved output SNR by about 8 dB, whereas using an
optimal § in equation (5) improved the output SNR by
less than 2dB. The OBPOF in equation (7) requires a
device capable of 3 levels (—1,0 and +1) and thus
should be called a ternary filter.

2.4. Complex ternary matched filter

The BPOFs in equations (5) and (7) attempt to repre-
sent a complex frequency response with a binary or
ternary real function. This results in certain unwanted
artifacts such as peak bifurcation. One solution pro-
posed to avoid these is the quad phase-only filter
(QPOF) [20], which accomodates four phase values
(+n/4, —n/4, +3n/4 and —3n/4) and unit magnitude.
It has been shown [21] that these QPOFs can be
implemented with use of only one MOSLM. A power-
ful generalization of the QPOF is the complex ternary
matched filter (CTMF) [10] defined below.

Hre(u) = H(10) — jH, (1), (8)

where H (u), i=1.2is a ternary (—1, 0 and +1) filter.
Thus each H (u) can be considered as a BPOF with its
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own regron of support K. A simple algorithm was
presented [10] to dentify these regrons of support. In
the examples tested. CTME was seen to yield SNRs
greater than those obtained using BPOVs, QPOFs. and
even POFs. In fact, the CTMFE SNR was within 2 dB of
the highest possible SNR (that of the CMF).

2.5, Pedk-to-correlation energy

Much of our past emphasis in designing partial infor-
mation correlation filters was in obtaining highest poss-
ible output SNR, that is in achieving maximum toler-
ance to additive noise in the input. This is certainly
needed. But another desirable attribute of the correla-
tion filters is that they produce sharp peaks in the
output correlation plane. Such sharp peaks reduce the
false alarm probability by decreasing the probability
that the correlation output has larger values elsewhere
than at a location corresponding to the true target
location.

Several measures have been suggested to quantify
the sharpness of the correlation peak. Most of these
measures are not conducive to optimization and thus do
not help us in designing regions of support to maximize
the peak sharpness. To help us in determining the
optimal regions of support, we introduced [14] the
following peak-to-correlation energy (PCE) measure.

lc(O)?

P e ar

)

where ¢(7) denotes the correlation output. Obviously,
PCE is the ratio of the square of the correlation peak
(assuming that it occurs at the origin) to the total
energy in the correlation plane. For broad outputs such
as ¢(r) = constant for all r, PCE approaches zero. On
the other hand, PCE approaches infinity when ¢(7) is a
sharp function such as the delta function. This measure
was inspired by our earlier success in designing mini-
mum average correlation energy (MACE) filters [22].
PCE is a special case of a more general peak sharpness
measure introduced by Dickey and Romero [23], but is
a more convenient measure for optimization purposes.
For example, it is fairly casy to show that

[fS(u)H (u) dul?
SIS H@)F du’

PCE = (10)

It is also casy to show that PCE in equation (10) is
maximized if we choose H(u) = a/S(u) for any constant
a. This confirms our expectation that the inverse filter
(IF) yields the sharpest possible output or equivalently
the highest PCE value. Of course, we will not pursue IF

any further for two reasons. Birsto it s extremeiy
sensitive to noise. Sceeond, its frequency  response
requires both magnitude and phase vanations and thus
does not constitute a partial intormanon filter. In the
next section, we discuss how vanous partial infor-
mation filters can be designed to maximize PCL.

3. Peak-to-correlation energy (PCE) maximization

In this section, we discuss how POFs, BPOFs and
CTMFs can be designed to maximize the PCE n
equation (10). In all three cases, we allow for filter
frequencies to have zero magnitude, that is there are
regions of support R associated with these filters. We
present efficient algorithms to identify these regions of
support that use a proposition provéd in appendix .
Throughout this section, we assume that the input 1s
noise-free since our focus is on obtaining sharp correla-
tion peaks by use of partial information filters.

3.1.

Let us consider phase-only filters of the following form.

Phase-only filters

e

0.

ueR,

if weR. ()

H(u)={
Here we have deliberately chosen —6(u) instead of

~@(u) as phase of H(u). The resulting PCE 1s given as
below.

_JrlS@)l exp jl@(u) — 6(w)] duf’

PCE
JelS@)f du .

(12)

For a given R, PCE in equation (12) is maximized if and
only if

O(u)=p(u) + p, (13)
where p is any constant. From now on, we will assume
without loss of generality that p=0. This confirms the
earlier results [23] which indicated that the conven-
tional POF is optimal from noisc tolerance as well as
peak sharpness considerations. When we substitute
equation (13) in cquation (12), we obtain

[[:lS ()] du)

PCE oy = e =t
POV 1a1S (w)) du

(14)

The next task is to choose R such that PCEpn, 18
maximized with respect to R
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To determine RY. the region of support that maxi-
mizes PCE, in equation (14)0 we form the discrete
version of equation (14 as below.

YT (‘\'::o h"s‘;)‘ -
POt e ()

where aois o constant that depends on the sampling
interval Aw and where

S, = 18(Au)|. (16)

We will assume from now on that a=1. We will also
assume that 1< i< N. Our objective 15 to choose the
integer subset R from the integer set {1,2,...,N} so
that PCEg,; (R) in cquation (15) is maximized.

The proposition stated and proved in appendix 1 is
useful here. Note that n(R) in equation (A 1) is identi-
cal to the PCEp, (R) in equation (15) if x,=S, and
y, =S}, i=12,...,N. Then z,=x/y, equals 1/, for
=12,.. ., N. According to the proposition in appen-
dix 1, the optimal subset R* must include all z, values
larger than a threshold. Since z,=1/§,, the optimal
region of support R* for the POF must be as below.

Ry ={i: $,<T}, (17)

where Tis a threshold to be determined. This suggests
the following algorithm for determining the optimal
region of support.

POF algorithm

1. Perform the Fourier transform on the reference
signal/image and sample it to obtain N samples. Let
S, denote the magnitudes. Let there be M distinct
magnitudes T, <T,<---<T, in the set
{S..5,,...,84).

2. Construct the region of support R}op(7,) as below
fori=12,... . M

Riyoe(T) ={k:Sy<T}. (18)
The corresponding PCEpqf is given by

(zkek&w(m Sk)z

PCEpoe(T,) = Eun;,),{r,)si

(19)

3. Choose the highest value from PCEp(T,),
-« + PCEpo (Ty). Use the corresponding R 4o (T))
as the region of support

This algorithm is fairly simple to implement. It basi-
cally requires M steps when the number of distinct FT

magnitudes s AL Bven when the image size or s 1]
size s large (for example 512 by 512), we can reduce M
1o reasonable values {such as 236) by quantizing the
spectral magnitudes to i few bits (for example 8). In
section 4. we will show numerical results obtimed usine
this algonthm.

320 Binary phase-only filters

Let us consider general BPOFEs of the form given
below.

-1 or 41, o ue R,

= 20
Hw {0, if ug¢R. (=0

Strictly speaking, this is a ternary valued filter [24]. but
we will refer to it a§ a BPOF with a region of support.
Using equation (20) in equation (10), we obtiin

[SxS()H (1) dul’
h) S I, 2
P SCoR a e

where the denominator is seen to depend only on the
choice of R. Thus, for a fixed R, maximizing PCE in
cquation (21) is equivalent to maximizing |c(0)], where

c(())=f S(u)H (u) du. 22)
R

If ¢(0) has magnitude |c(0)] and phase /3, that is
c(0)=|c(V)le", (23)

we can write |c(0)| as below.
[ (0) =J S(u) e PH(W) du
R

=j Sp(u)H (u) du, (24)

where
Sp(u)=S(u)e . (25)

Before we discuss how |c(0)] in equation (24) can be
maximized by choosing proper H(u), it is important to
rciterate that 8 is the phase of the correlation output (at
the origin) when H(u) is used as the filter. The follow-
ing discussion about maximizing |c((})] is the same as
the one found in reference [10] and is epeated here for
convenience. Since H(u) and |c(0)] are real. cquation
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(24} is equivalent to the following.

[ ()] :—j Sarlu)H () du, (26)
R

where 8 () is the real part of S (1) and is given by

Slw) = Silu) cos 45 (u) sin 3, (27)
with Sy (1) and 8, () being the real part and the imagin-
ary part, respectively, of S(w).

Since H(w) takes on either =1 or +1 forallue R, an
upperbound can be put on the {¢(0)] in cquation (26) as
shown below.

le(O)] sf |Spr(u)] du, (28)
R
with tne equality satisfied if we use
sgn [Spe(u). for ueR,
Hypop(u) = {()‘ for u¢R. (29)

However, we have not yet proved that the filter in
equation (29) does indeed yield a correlation output
with the correct phase 3. We prove in appendix 2 that
the BPOF that yiclds the highest value of |c(0)] must be
of the form in equation (29) with 8=8*, where §* is
the resulting phase of the output correlation peak, that
1s, we can assume that the optimal BPOF is of the form
in ecquation (29). The resulting PCEgpor (R) is given by

(S Spr(w)] du?

PCEgpor(R) = -\J'RIS(“)l2 du

(30)

Our next objective is to choose R such that PCEgpor(R)
in equation (30) is maximized. Once again, we form the
discrete version of the FT magnitudes, set the irrele-
vant (at least for optimization purposes) constants to
unity and obtain the following.

[Zk € RSﬂRklz

PCE R)= )
BP()F( ) ZkeRSi

3y

where S, was defined earlier in equation (16) and where

Sare = SprkAu). (32)

Once again, the proposition in appendix 1 is in:tru-
mental in determining R*. PCEgpor(R) in equation (31}
is the same as n(R) in equation (45) if we assign x, = Sgg,
andy,=S!fori=12,...,N. As before, what matters
is the ratic z,=x/y, = Sze/S!. The optimal region of
support R 4o must be of the following form.

Rupor ={izz, = T}, (33)

where T s a threshold to be determined. Since
depends on S, which in turn depends on 3. we must
try all possible 8 values before we determine the best
R - However, it can be shown [10] that we need 1o
vary 3 only in [0,7/2]. Thus, we try /2 values in
increments of Af3. This leads to the following BPOF
algorithm.

BPOF algorithm
1. Start with §=0.

2. Compute Sggu, Sy fork=12,. .. Nusing equations
(16), (25) and (26). Compute z, = Szp./Si.

3. Determine M, the number of distinct magnitudes in
the set {z,,z;,...,zy}. Decnote these as T,,
T,,...,Ty. The number M and the levels T, can
change as § is changed.

4. Determine the optimal region of support as below.

Ryeor(B, T)={k:z, =T} (34)
Compute the associated PCE §p¢ from equation
(31). Do thisfori=1.2,... M.

5. Determine the maximum PCE},o(8, Ti) as 1 is
varied from 1 to M. This is the maximum possible

PCEqror(B).

6. Increment § by AB. If 8 exceeds nt/2, go to step 7;
otherwise, go to step 2.

7. Determine the maximum among all PCE}poe(f)
values. Let 8* be the corresponding angle. Output
the associated optimal region of support.

When the above algorithm searches over § values in
the range [0, n/2], we can identify the best BPOF.
When =0 and 8 =n/2, the resulting BPOFs in equa-
tion (29) possess the correct even or odd symmetry and
the resulting correlation output ¢(0) will have phase
B=0and $=n/2. Thus for §=0and f=n/2, the filters
identified by the above algorithm will indeed yield the
proper correlation outputs. We have shown in appen-
dix 2 that the fiiter yielding the highest PCE value also
is consistent in that sense. However_there i1s no such
guarantee for other f values. In section 4, we will show
numerical results obtained using this algorithm.
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3.3 Complex ternary matched filters
In this section, we consider CTMEs of the form in
equation (8). The resulting PCE -y, 15 given by
[[S() H () dul
JISGO)I[HE () + Hi) ] du

B S () H () du)
RSP du+ [ |S(w)) du’

PCE gy =

(35)

where H(u)=0 for u¢ R, and H.(u)=0 for u¢R;;
otherwise, H (u) and H,(u) take on —1 or +1. To
maximize PCE -y 1n equation (35), we need to maxi-
mize |c(0)], where ¢(0) is as in equations (22) and (23).
We can write |¢(0)] as

|c(())]z[§,,(u)ll(u)du
=f[S,,R(u)+jSﬁ,(u)][H,(u)—sz(u)]du

- J S (1) Hy () du + f Sp1(u) Ha(w) du,
‘ (36)

where once again, we utilized the fact that |¢(0)| must
be real. Obviously, |c(0)] attains the highest possible
value {(for fixed R, and R,) if we can choose H,(u) and
H,(u) as below.

sgn[ Spr(10)]. for ueR,,
= 37
Hitw) {0, for ugR, OV
and
sgn[Sg(w)], for ueR,,
H(w)= {(), for ug¢R,, (38)

Sgriu) is defined in equation (27) and Sg;(u) is given as
follows.

Spi(u) = Si(u) cos B — Sg(u) sin 3. 39)

Once agnin, there is no guarantee that H,(u) and
H,(u) in equations (37) and (38) produce a consistent
phase § in the correlation output. However, using the
associated symmetries, we can show [10} that for 8=0
and 3 =n/2, these filters produce correct phases in the
correlauon output. We can also show [10] that the
CTMF that yields the highest [c(0)| value is of the form
in equations (37) and {38) with 8 ="* and it produces a
correlation output with phase #*. We are not repeating

that proof here since it is a genceralization ot the BPOF
proof in appendix 2 and can be found clscwhere [10].
When the optimal CTME, is used. we obtain

U rdSar()] du+ [ ]Su(i) du]

78] "L I -
I (,L( IMl-(ﬂ) J‘Rlls(u)ll du+ IRJS(“)’-‘ Jdu

(40)

If we take the discrete form of the integrals in equation
(40) and set some of the constants to unity. we obtain

[zkeR.SﬂRL’ + erRgfﬁylL]:’ @1
Zier it k00

PCEGme(B) =

where S, is defined in equation (16) and Sy, and Sy,
are samples of Sgp(u) and Sg(u) fork=12, ... N. At
first, equation (41) appears to be very different from
the n(R) in equation (45). However R, and R, repre-
sent regions of support for two different functions and
thus are independent. Let us consider the following
sequences x, and y, each of length 2N. For i=
1,2, ..., N define

xl=SﬂRl‘

Xan=Ss.
N (42)
y, =82,

y,+N:S.2-

Similarly, construct a composite region of support R
such that integers between 1 and N refer to the contents
of R, and integers between (N + 1) and 2N refer to the
contents in R,. Then equation (41) can be rewritten as
below.

{zkekxl}lz

PCEtme(B) = S .
keRYk

(43)

Now, we can apply the results of the proposition in
appendix 1 which indicates that the optimal R {ny; must
be of the following form.

R’émp(ﬂ)={k:xk/,\'k>7}- (44)

As before, we need to vary 8 in increments of AfS
between 0 and n/2. This leads to the following CTMF
algorithm.

CTMF algorithm
1. Start with §=0.

2. Compute Sppi. Spie and S, for k=12... .. N from
equations (16), (25), (26) and (39). Determinge x,
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Figure |

The 32 X 32 image of a missile launcher.

and y, for i=12,... 2N from equation (42).
Compute z, =x/y, fork=12....,2N.

3. Determine the number M ot distinct magnitudes in

the set {z,,z,, ... Denote these as
T,.7,, ..., Ty

. 2ot

4. Determine the optimal composite region of support
as below.

Rimme(B.T)=tk: 2, =T}

Identify R and R associated with the above com-
posite region of support and compute the associated
PCE{we from equation (41). Do this for i=
P2, ... M.

5. Determine the .naximum PCE¢ () by varying i
from 1 to M.

6. Increment 8 by AB. If B exeeds n/2, go to step 7;
otherwise, go to :tep 2.

7. Determine the maximum PCE{;y.(8). Let 8* be
the corresponding angle. Output the associated opti-
mal regions of support.

The same comments as in the BPOF algorithm apply
here. We can be sure of the consistency of the filters
only for 3=0, 8=n/2 and B*. We will discuss this issue
in some more detail in our next section on numerical
results.

4. Numerical results

In this section, we apply the algorithms discussed in
section 3 on .ome sample images to illustrate the
improvements possible in correlation filter design. The
image used for most of the testing is the 32 x 32 missiie
launcher image with 256 grav levels shown in figure 1.

a0)

Two types of results are shown in this section. The tirst
type. that we refer to as ‘numerical evaluations’, con-
sists of PCE and SNR values obtained by numerically
evaluating various algebraic expressions (such as equa-
tons (19). (31) and (41}). The other type of results that
we refer to as Ssimulation results” are obtained by
producing correlation outputs and then estimating
SNRs and PCEs tfrom equations (2) and (9). PCE can
be obtamed from single correlation output. However,
SNR estimation requires that we compute expected
values and vaniances and thus we produce many (one
hundred in our tests) correlation outputs (using inde-
pendent input noise realizations) from which we obtain
the necessary averages and vanances. To avoid getting
a circular correlation (wrap-around error), we pad the
32 x 32 input images with zeros to obtain 64 X 64 arrays
and perform FFTs of size 64x64 on them. When
constructing BPOFs and CTMFs, it is important to
centre the images properly. We ensure that the cen-
troid of the image coincides with the origin of the array.
Finally, when we add noise to the input image, we add
it to all 64 x64 pixels in the array. Otherwise. the
resulting noise power spectral density will not be a
constant as was assumed in the derivation of OPOF,
OBPOF, ctc.

4.1.

The 64 X 64 FFT of the image in figure 1 is a complex
array. In figure 2, we show the magmtude of that array.
White regions in figure 2 indicate frequencies with large
magnitudes and dark regions indicate low magnitudes.
We are including this figure so that the regions of
support we show can be properly interpreted. The
origin of this array is right at the centre in these figures.

We used the algorithms derived earlier {10, 12, 13] to
determine regions of support for maximizing the ouput

Regions of support

Vieure 2. The magnitude of the 64 X M—FFT of the image in

figure .
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SNR when the input noise 1s additive and white. We
show these regions in figure 3. Here white regions
indicate where the filter has nonzero magnitude and
dark regions indicate where the filter has zero magni-
tude. Figure 3(a) sh-ws the region of support for
OPOF, figure 3(b) for optimal BPOF (for 8=0°) and
figure 3(c) shows R, for CTMF (for 8=45°) and figurc
3(d) shows R, for CTMF. All these regions allow low
frequencies to go through while blocking high frequen-
cies. This 1s as expected for SNR maximization.
However, we could not have predicted the irregular
shapes of these optimal regions of support without
using the algorithms derived earlier. These filters will
not produce sharp correlation peaks because of their
low pass nature.

The optimal regions of support obtained by maximiz-
ing the PCE values are shown in figure 4. The 8 valuc
for which we get the highest PCE value when using a
BPOF is 90° (not 0°) for this example. The region of
support shown in figure 4(b) thus uses f=90".
Similarly, the regions of support in figure 4(c. d) for
CTMFE use a g3 value of 0°. These regions are very

Figure 3. Optimal regions of sup-
port to maximize output SNR when
input noise is additive and white: (a)
OPOF, (b) OBPOF (for =0, (c)
region R, for CTMF (for =45,
(d) region R, for CTMF (for 8=
45°).

different from those in figure 3. These emphasize high
frequencies. Once again, we could not have predicted
the complicated shapes of these regions without the
algorithms derived in this paper. Also, note that the
OPCE-POF in figure 4(a) is zero for many low frequen-
cies which means that the conventional POF (which is
all pass) will result in lower PCE values.

4.2.  Qutput correlations

In this section, let us examine the correlation outputs
produced by various filters. Figure 5 shows the correla-
tion outputs obtained using CMF, conventional POF,
BPOF (real part binarization), BPOF (imaginary part
binarizaton), OPOF, OBPOF, CTMF, OPCE-POF,
OFPCE-BPOF and OPCE-CTMF. We are including all
of these in one place to enable easy comparisons. In all
these figurcs, the input was noise-free. All methods
produce peaks at the right location. The filters opti-
mized for SNR produce broad correlation peaks wher-
eas filters designed to optimize PCE produce sharp
correlation peaks. Also OPCE-POF produces sharper
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Figure 4. Optimal regions of sup-
port o maximize PCE: (q)
OPCE-POF, (b) OPCE-BPOF (for
B=90° (¢) R, for OPCE-CTMF

peaks than the POF as seen by comparing figure 5(b)
and  (g). Also, by using OPCE-BPOF and
OPCE-CTMF we can use binary or ternary devices in
the filter plane and still obtain as sharp output peaks
as can be obtained using phase-only filters (see figure
5(g-1).

The above figures describe only part of the story. We
show in figure 6 the correlation outputs when the input
image was corrupted by zero mean additive white
noise. The variance of the noise was selected to be
100000. This corresponds to an input SNR of
=17-7343. The input SNR is defined as the ratio of the
average energy per pixel in the input image {y the
variance of the noise. It js obvious that the CMT-,
OPOF, OBPOF and CTMF are robust to input noi-c
whereas o*ber filters are not. Thus, we have traded
away noise tolerance when we maximized PCE. This,
we believe, is the unfortunate reality in correlation
hlter design. We will discuss this issue in more detail in
the next section.

(for 8=0°) (d) R, for OPCE-CTMF
(for £ =(r).

4.3.

In this subsection, we present a summary of simulation
results we observed for various filters. In table 1, we
indicate the SNR and PCE values obtained (using
numerical evaluation as well as simulations) for various
filters. The numerical resuits and the simulation results
are very close to each other. In fact, for the PCE
measure, they are the same since there is no random-
ness involved in estimating PCE values.

As expected, the CMF provides the highest output
SNR; but OPOF and CTMF both produce output
SNRs within 2 dB of this. When we realize that CTMF
can be implemented with a single MOSLM in the filter
Plane, we believe that it is now possible to implement
highly noise-tolerant correlation filters on commercially
available real-time SL.Ms such as the MOSIM. Partial
information filters optimized for peak sharpness vield
highly degraded SNRs (about 20 dB lower than that of
the CMF). On the other hand, wsc of OPCE-POF,
OPCE-BPOF and OPCE-CTMF improves the PCT- h

Comparison of numerical and simulation resulry
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Figure 5. Correlation outputs produced by various filters when input has no noise: (a) CMF, (b) conventional POF, () BPOF (real

part binarization), (d) BPOF (imaginary part binarization), (¢} OPOF, (f) OBPOF, (g) CTMF, (h) ()PCE-POF. (i) OPCE-BPOF,
(j) OPCE-CTMF.
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Correlation Output

Figure § (continued)

about 15 to 20 dB compared with the CMF. From PCE
considerations, OBPOF, CTMF, and OPOF per-
formed the worst. Their PCE values are lower than that
of even CMF. Thus, we seem to have conflicting
objectives in optimizing SNR and PCE.

4.4

To determine whether or not the filters discussed in this
paper can discriminate between images, we tested all of
the filters (designed for the missile launcher image) on
the 32x 32 image of a tank shown in figure 7. The
discussion of these tests is the topic of this subsection.

Discrimination performance

91
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Correlation Ou'put

2418
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Corralation Output

Table 1. Output SNR and PCE values for various filters for a
missile launcher

SNR (dB) PCE (dB)
Filter
type Theory  Simulation  Theory  Simulation
CMF 68-63 67-97 16-00 16-00
POF 59-25 59-28 26-74 26-74
BPOF(real) 56-64 56-94 24-13 24-13
BPOF(imag.) 53-42 53-79 20-92 20-92
OPOF 66-84 66-50 13-7 13-71
OBPOF 66-62 66-67 13-49 13-49
CTMF 66-97 67-15 14-47 14-47
OPCE-POF 49.95 49-74 33.54 33-54
OPCE-BPOF 47-56 47-88 73086 30-86
OPCE-CTMF 48-78 48.29 33-49 33-49
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igure 6. Correlation outputs produced by various filters when the input SNR is ~17-73dB: (a) CMF, (b) c-onventional POF,

'} BPOF (real part binarization), (d) BPOF (imaginary part binarization), (¢) OPOF, (f) OBPOFT, (g) CTMF, (h) OPCE-POF,
) OPCE-BPOF, (j) OPCE-CTMF.
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Figure 6 (continued)

For the simulations, we again zero-padded the image
to make it a 64 X 64 array. This image was then cor-
rupted by adding zero-mean gaussian noise with a
variance of 1 (the same noise variance as in table 1).
For the tank image, the image energy was such that this
corresponded to an input SNR of 28-57 dB. In table 2,
we show the processing gains provided by various filters
(designed with the missile launcher image) when the
input image is a missile launcher and when it is a tank.
Processing gain (PG) is defined as the difference in dB
between the output SNR and the input SNR. Thus PG
takes into account the differences in input image
energy. We use the difference in the PG for the missile
launcher image and the PG for the tank image as a

2

Correlation Output

]
2

Correlation Output

Figure 7. The 32 X 32 image of a tank.
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Figure 8. Correlation outputs produced by various filters for the tank image without noise: (a) CMF, (b) Conventional POF,
(¢) BPOF (real part binarization), (d) BPOF (imaginary part binarization), (¢) OPOF, (f) OBPOF, (g) CTMF, (h) OPCE-POF,
() OPCE-BPOF, (j) OPCE-CTMF.
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Table2. Discrimination performance of various filters.

PG for PG for Discrim-

missile tank ination
Filter launcher image gain
type image (dB) (dB) (dB)
CMF 35-70 32-56 3-14
POF 27-01 16-38 10-63
BPOF(real) 24-67 16-93 7-44
BPOF(imag.) 21-52 3.02 18-50
OPOF 3423 32-61 1-62
OBPOF 34-40 3248 1.92
CTMF 34-88 3383 1-05
OPCE-POF 17-47 —12-65 30-12
OPCE-BPOF 15-61 -5-30 20-91
OPCE-CTMF 16-02 —6-61 22:63

Corretation Qutput

Corratation Output

measure of discrimination gain (DG), I'G is indicated
in table 2.

This table seems to divide the 10 filters into three
groups. The filters optimized for SNR (CMF, OPOF,
OBPOF and CTMF) provide very poor discrimation.
Filters designed to maximize PCE (OPCE-POF,
OPCE-RPOF and OPCE-CTMF) provide very good
discrimination. Othe: filters (POF, BPOF-real,
BPOF-imaginary) .ppear to provide intermediate
levels of discrimination.

The correlation outputs in figure 8 tell the rest of the
story. We correlated the noise-free tank image with the
various fi'ters. One can see, by comparing these figures
with the corresponding ones in figure S, that the opti-
mal PCE filters do indeed provide better discrimation
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rrformance. There are no clean peaks in these corre-
tion outputs cven though the image is noise-free.
owever, some of the optimal SNR filters (OPOF,
BPOF and CTMF) arc virtually unchanged. This s
ae to the fact that the regions of support for these
ters are so small that the largest values for both
1ages are passed.

Conclusions

| this paper, we developed and described algorithms
7 designing partial information correlation filters
’OFs, BPOFs and CTMFs) yielding maximum peak-
-correlation energy (PCE) values. Numerical and
mulation results were presented to quantify the resul-
nt improvements. It was observed that significant
CE increases (about 15 dB) can be obtained by use of
suitable region of support. We noted that these
1 rovements in peak sharpness were obtained at the
(pense of degraded noise tolerance. Unfortunately,
vise tolerance and peak sharpness apear to be conflict-
g objectives in correlation filter design. When the
put scene is known a priori to be reasonably noise-
ec (as in controlled scenarios such as robotic vision),
makes more sense to optimize PCE. On the other
ind, when the input image can be noisy (as in military
dject recognition), it makes sense to maximize SNR.
here may be other situations where both measures are
wportant and we need to find a compromise solution.
'e are currently working on developing such tech-
ques. Also, filters allowing high spatial frequencies
uch as OPCE-POF, OPCE-BPOF, etc.) provide bet-
r discrimination than the filters allowing only low
atial frequencies.
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Appendix 1

Let {x,,x,,---,xx} and {y,,y,,- -, yn} denote two
sets of positive values satisfying z,=z,= --- =22zy>0
where z,=x/ly,,i=1.2,---,N. We are interested in
choosing a subset of integers R from the set
{1,2, - - -, N} such that the following ratio is maximized

(ziekxl)z
Ry="2
’7( ) Zr(Ry:

(45)
Let R* denote such an optimal subset. In this appendix,
we will prove the following important proposition con-
cerning R*.
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Proposition: If integer n iy included in the optimal
subset R*  then all integers k< n must also be included in
R*.

Proof: Suppose neR*, k¢ R*, where k<in. We will
demonstrate a contradiction thus proving that the
above cannot happen. To show this, we define the
following

a=> x,—x,, (46)
i€R"

b= y.-y, (47)
1e€R”

Here a and b refer to the summation of all x;s (except
X,) in R* and the summation of all y,s (except for y,) in
R*, respectively. Since 7(R*) must be larger than n(R)
where R is obtained from R* by removing n, we have
the following inequality.

a
=, 48
y.+b b (48)
After some algebraic manipulation, we obtain
bx2+ 2abx,=a’y,. (49)

Let us now consider the n obtained when we use
R’ =R* u{k}, i.e., the subset obtained by adding k to
the optimal subset. Let A denote the difference
between n(R’) and n(R*)

A=n(R")-n(R*)

(x,+a+x,) (x,+a)
B Y.+ b+y, y.+b

_(yn+b)(xn+a+xk)2_(xn+a)2(yn+b +yk)
- (yn+b)(yn+b+yk) ‘

(50)

Since the denominator of equation (50) is positive, we
can show that A >0 if we can show that the numerator
of equation (50) is positive. That numerator can be
simplified as below

numerator = x,(y, + b)(x, + 2x, + 2a) — y,(x, + a)’. (51)

Dividing both sides of equation (51) by the positive
term v (v, + b). we get the following result

numerator
yh(y,+ b)
X (x,+a)
X 42w, 420y - )
yA _\',, + b)
X, 2442 (x,+a)’
=" (x,+2a+2x,) -
y, Gt 2k 2R =G
xn(yn + b)(xk +2a+ 2Xn) - yn(xn + u)j
- Ya(va+ b)
(bx2+2abx,—a’y,)+ (bx}+ xiy, + bx,x, + x,x,v.)
Yalyntb) -
(32)

where we used the fact that since k<n, z,=x,/v, =
z,=X,ly,. The second term in the numerator of equa-
tion (52) is obviously positive. The first term is also
positive from equation (49). This implies that
Numerator >0, which in turn implies that »(R"')>
7(R*), an absurd result. This is a contradiction thus
implying that if integer n is included in R*, then all
k =<n must also be included in R*.

This proposition implies that the optimal subset R*
must be of the following form

R={i:z;=T}, (33)

where the threshold T is not known a priori. Thus we
can vary T and determine the best R*.

'

Appendix 2

Proposition: For a given region of support R, the
BPOF yielding the highest |c(0)| value must be of the
form given in equation (29).

Proof: Let the output c(0) using a BPOF H(u) have
magnitude |c| and associated phase S, that is

j S(u)H(u)du=|c|e . (54)

Choosing H(u) to maximize |c| is equivalent to maxi-
mizing the following

le] =J' S(u)e ¥ H(u) du

=J Spr(u)H(u) du.
R (55)
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dbviously, ¢ is maximized (for a given j3) if we can use
he following BPOF

sgn [Spr(u)], for ueR,
H"(“)_{O, for ug¢R. (56)

.et the binary phase-only filter that maximizes |c| result
n a output correlation with phase *. Then we will
irove that this optimal filter must be H,(u) where
15(u) is defined in equation (58). Corresponding maxi-
num value of |c| is denoted by |c(B*)| and is given by

|C(ﬂ')|=f Sp-r(u)Hg-(u) du (57)

We need to prove that when we substitute Hg.(u) in
quation (54), we do indeed get a phase of 8*. Let us
issume that this filter yields an output phase 8, #8*.
et A=j,—-8*. From equation (57), we can write

lc(8*)|=Re [e"‘ﬂ'f S(u)Hﬁ.(u)du]. (58)

Also, since we assumed that when we use Hg.(u) in
equation (54) we get an output with magnitude |¢| and
phase 8,, we can write the following

lé] e’Aze"""[ S(u)Hy-(u) du. (59)

The right-hand side of equation (58) is the real part of
the right hand side of equation (59) and thus |c(8*)|
must be the real part of |¢| e’. Thus, unless A =0, we
have

[é[>e(B*)I. (60)

This is a contradiction since we started with the as-
sumption that Hg.(u) is the optimal filter and [c(8*)| is
the maximum possible value. Thus 8, cannot be differ-
ent from B8*. So, the optimal filter must yield a consis-
tent output phase.
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TRADEOFFS IN THE DESIGN OFF CORRELATION FILTERS

B.V.K. Vijaya Kumar, Charles D. Hendrix and Daniel W. Carlson

Electrical and Computer Engincering Department
Carncgie Mellon University
Pittsburgh, PA 15213

Abstract

Designing filters for use with optical correlators is really an exercise in trading one performance
measure against another. In this critical review, we present several different situations where such a
tradeoff is carried out. An informed understanding of this law of nature is important in making sure
that our goals in optical pattern recognition are realistic.

1 Introduction

Correlation has been the focal point of much optical pattern recognition research over the past twenty
five years. Vanderlugt! demonstrated how a colierent optical processor can be used to implement complex
frequency response needed in a Classical Matched Filter (CMF). The CMF is attractive in the sense

that it maximizes? the tolerance to the additive noise in the input. However it suffers from the following
drawbacks.

o CMFs are unacceptably sensitive to distortions in the input image (e.g., rotations, changes in scale,
etc.).

¢ CMFs are light-inefficient because their transmittance is less than one at many frequencies.

¢ The complex-valued frequency response of the CMF makes it inconvenient for implementation on

currently available real-time Spatial Light Modulators (SLMs) such as the Magneto-Optic SLM?
(MOSLM).

Several strategies have been used to alleviate the above problems. To make the optical correlators
more light efficient, Phase-Only Filters? (POFs) and other variants have been suggested. To make these
filters more appropriate for implementation on available devices, filters such as the Binary Phase-Only
Filters’ (BPOF's) have been suggested. Many methods to reduce the distortion sensitivity of the matched
filters have been proposed. A good place to start learning more about these attempts is the survey paper
by Vijaya Kumar®. Most of these methods focus on one aspect (e.g., distortion sensitivity) while ignoring
others (e.g., light throughput, noise tolerance, etc.) in the design of correlation filters. The unfortunate
reality is that by improving one fcature of the filter performance, we are usually degrading others. The
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poal of this manuscript is to pull topether wany dillerent ways that tradeolts can be carned out. By

understanding the implicit tradeolls. we can become more realistic in setting, our poals {for filter desjon.

To help us in judging these tradeofis quantitatively, we introduce our notation in Section 2 and
introduce the relevant performance measures in Section 3. In Section 4, we discuss the Optimal Tradeoft
Filters (OTFs) introduced by Refregier”. These show how noise tolerance, correlation peak sharpness
and light efliciency can be traded off in designing a complex-valued filter. Another method suggested is
to record the matched filters nonlinearly. By using fractional power filters, we demonstrate in Section 5
that this nonlinear recording leads to another example of trading ofl among these performance measures.
The POFs and BPOFs as introduced originally are allpass, i.e., these filters have unit magnitude at all
frequencies. Recently, it has been shown that the noise tolerance®® and correlation peak sharpness'® of
these filters can be maximized by setling some frequencies to have zero magnitude. The set of frequencies
for which the filter magnitude is nonzero is known as the Region of Support (ROS). In Section 6, we
describe how the ROS can be sclected to provide an optimal tradeoff between noise tolerance and
correlation peak sharpness. Another way the ROS can be used is to tradeofl the sensitivity to noise
in the input against detector noise. This is discussed in Section 7. In Section §, we switch gears and
consider an important tradeoff in composite filter design. In this section, we show the tradeoff in the
number of training images used and the resulting noise tolerance. In Section 9, we discuss the optimal
circular harmonic tradeofl filters introduced by Refregier!! and also summarize the work by Refregier

and Figue!? in relating OTF's to classical Wiener filters. Finally, in Section 10, we provide our concluding
remarks.

2 Background ¢

Let us first consider the problem of detecting the presence or the absence of a target image s(z,y)
corrupted by additive, zero-mean noise n(z,y). One optical processor designed for this task is the
coherent optical correlator shown in Fig. 1.

INPUT FILTER CORRELATION

A A
y V

Pi L P2 L2 P3

Figure 1: A schematic of coherent optical correlator.

Here the input image r(z,y)} (which is s(z,y) + n(z,y)) is placed in plane P, and illuminated by
coherent light. Then the light wavefront reaching plane P, can be represented by R(u,v) which is the
2-D Fourier Transform (FT) of r(z,y). If we prerecord and place in plane P, a complex transmittance
H*(u,v) (with the superscript + denoting the complex conjugation), then the light wavefront ¢(7,,7,) in
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plane Pyas given as follows.

A7,y o Ykt o)1, e))
e y) s (e y) (1)

where (r, y)is the inverse Fourier transform of /1 (u, v) and » denotes the 2-D crosscorrelation operation.
We must emphasize that the complex conjugate of H(u,v) will be placed in plane Py The classical
matched filter (CMF) uses

Hear(u,v) = 5(u, v) (2)

where S(u,v) is the 2-D Fourier transform of s(z,y), the reference image. When this s(z,y) is present
in the input scene r(z,y), the resultant correlation output ¢(7,,7,) has a large value (called the “peak™)
at one location and small values elsewhere. The spatial coordinates of the correlation peak indicate the
location of s(z,y) in the input scene.

As described in Section 1, one problem with CMFs is that the filter transmittance |[{ (u,v)] is less
than one at many frequencies and thus causes much of the light incident on plane Py to be_absorbed by
the medinm in plane P,. One solution for this is the POF introduced by Horner and Gianino®.

S(u,v)

IIPO[-‘(U,U): m (3)

Thus [H por(u,v)| is one for all frequencies and there will be no light attenuation. Sinces POFs are

allpass, there is no way to filter out the noise in the input plane. We will discuss this in detail in Section
.

Soine currentlysavailable SLMs such as the MOSLM can be made to provide transmittances that are
either 41 or -1. For implementation on such devices, we must make H(u,v) to be either +1 or -1. This
can be done by binarizing either the rea! part®, the imaginary part!3 (or some linear combination! of
the two) of S(wu,v) to get H(u,v). Such filters are known as Binary Phase-Only Filters (BPOFs).

Hppor(u,v) = SgnlaSp(u,v) — V1 - a?251(u,v)] (4)

where 0 < @ < 1, Sp(u,v) and S(u, v) are the real part and the imaginary part, respectively, of S(u,v).
The Sgn[-] function is defined by
Sen[z] = { J_“; ifz20 (5)

ifz<0

Other attempts to design correlation filters suitable for implementation on available SLMs include the
work by Juday'®:'6 and Ly Farn and Goodman??,

Both POFs and BPOFs are sensitive to minor variations in the input image and do not address the
problem of distortion-invariance. Several filter design schemes® have been proposed to make the correla-
tion outputs more invariant to distortions in the input image. One of these methods is known as the Syn-
thetic Discriminant Function (SDF) approach. The idea underlying the SDF method is to design a syn-
thetic or composite h(z, y) such that when it is correlated against images {s1(z, y), s2(z, ), - -, sn(Z,¥) },
the resulting correlation outputs have cqually strong correlation peaks at the correct locations. Here
si(z,y),1=1,2,. ., N represent the original image s(z,y) distorted by various amounts. The “training
set” of these N images represents the expected distortions in the image. In the first SDF method!®, the
composite itnage hi(z, y) is assumed to be a linear combination of the N training images, i.e.,

h(z,y) = @sy(r,y) + azs2(z,y) + - - - + ansn(z,y) (6)
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where ap as. .., an. are weiplits 10 be determined. These weiphts are determined such that hiz,y),
when correlited with the tradnine hmaee s (o0y) vields a specified cross correlation output ¢, at the
l)l.l;"ill.
B, y) s s Doy = // Iz, y) sz y) d dy
= ¢, 1=12,...,N (

~1
~—

Substituting eq. (7) iu eq. (G), we can obtain the following set of N linear equations in N unknowns,
namely ay,ay,.. . an.

A
D @Ry =¢,, j=1,2,..,N, (8

=1

where I, the inner product of s,(z,y) and sj(z,y) is given by

Ry = [ [stzm)steydady, (9)

Wlhile the basic SDF solves the problen: of distortion sensitivity, it introduces other difficulties. There is
no accounting of input noise in the basic SDF. Also, since the basic SDF controls what happens to the

output al only one point, the resulting correlation outputs usually exhibit sidelobes much laiger than
the desired value at the origin.

To introduce noise tolerance into SDF design, Vijaya Kumar!? proposed Minimum Variance SDFs
(MVSDFs) that exhibit the smallest output variance while satisfying the SDF constraints in eq. (7). To
reduce the false sidelobe problein, Mahalanobis et. al.? introduced the Min.mum Average Correlation
Energy (MACE) filter that minimizes the average correlation plane energy while satisfying the SDF

constraints in eq. (7). Recently, Refregier?! showed how these different design objectives can be combined
into a single filter design.

In this section, we provided a brief background about the classical matched filters, phase-only filters,
binary phase-only filters and synthetic discriminant functions. In the next section, we review some
periormance measures useful in assessing the eflectiveness of these filters.

3 Performance Measures

As already indicated, it is important to use quantitative measures of performance in evaluating various

filter design schemes. In this section, we review some useful measures. This is essentially a condensed
version of a longer paper?? on the same top:

We have stated in Section 2 that CMFs provide maximum noise tolerance. More precisely, CMFs
yield the highest Signal-to-Noise Ratio (SNR) where the SNR (assuming that the correlation peak is at
the center) is defined as follows
o | £{c(0,0)}}2
SNR=——> 172 10

Var{c(0,0)} (10)

This SNR is the ratio of the average value of the correlation peak to its standard deviation. Other SNR
measures can Le found in the literature, but we fecl that this is the most appropriate for characterizing
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the noise tolerance of a linear processor. This SNR can also be expressed as

. Stu, o) H{u,v)dudel”

SN - L Su, o) 17 1f*); S {(rn
If P, o) T G o) dud e

where 17, (u, v) is the power spectral density of the additive noise n(x, y) in the input. The SNR expression

in eq. (11) indicates the explicit dependence on the reference image FT S(u, »), noise spectrum P, (u, )

and of course, on the filter /f (v, v). Using Cauchy-Schwartz inequality, one can easily prove? that

2
/ ————IS(U' o)l du dv
P(u,v)

= SN Rpa: (12)

SN

IN

and that this equality is achieved by the CMF. All other filters (including POF, BPOY, SDVF, etc.) can
only yield smaller SNRs. However, we can seck POFs and BPOFs that maximize SNRs. Such SNR-
maximal filters are known as Optimal POFs® and Optimal BPOFs?®. In some sense, the MVSDFE!
yields the optimal SNR among all SDFs.

Another desirable atiribute for a correlation output is that its peak is sharp and that the sidelobes
are low. This is necessary for an accurate localization of the correlation peak (and hence the target
image in the scene) and for reducing false peaks. Several measures have been used to characterize the

peak sharpness. But the one we find most convenient for analysis is Peak-to-Correlation Energy (PCE)
defined below.

le(0,0)}?
I el 72 dr o dr, (13)

This measure provides the ratio of the correlation peak to the total energy in the correlation plane.
PCE is large for delta-function type correlations and is close to zero for constant correlations. Recently,
Horner?* suggested the use of a modified PCE measure in which the denominator excludes the energy
at the peak. The PCE can be rewritten in terms of $(u,v) and H(u,v) as below.

rer =

| ff S(x,v) H*(u,v) du dv)?

PO = 1 o 1 (ar v) P du do (1)

It is fairly easy to show that PCE is maximized by the inverse filter

Hir(u,v) = —S“(IT;J_) (15)

SNR and PCE measure the noise tolerance and peak sharpness. Another important attribute needed
for optical correlation filters is their light throughput efficiency. We would like | H (u, v)] to be as close
to one as possible at all frequencies. Since these filters are energy absorbing, 0 < |/ (u,v)] < 1. Thus
CMF's have |H (u,v)| close to zero at many frequencies and much of the light incident on P, will not

make it to the detector in plane P3. To quantify this light efficiency, Horner?s originally introduced the
following measure.

[ le(rs, )P dro dry
M s y) Pz dy (16)

The original Horner efficiency considers the ratio of the total energy in the correlation planc to the
total energy in the input plane. Since |/ (u,v)| < 1, the Horner efficiency < 1 for all filters. From the
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following frequency domain version of eq. (16), it is easy to see that yyy = 1 whenever [/ (u,v)] = 1 for
all (x,v).1e, whenever the filter is an all-pass filter (g POF, BPOY, etel).

11150 )2 (u, o) dude (171
. (15, 0)|2dudr - -
One drawback with 7y is that it includes all the output light in the numerator. However, it is more

important to have more light in the correlation peak than anywhere else. 'hus it is preferable to use
the following modified Horner efficiency along the lines suggested by Caulfield?s.

PR '
T IMs(z )P da dy
| ff S(u,v) H*(u,v)du dvf?
J15(u,v)]2dudv ’

(18)

It can be seen from eqs. (17) and (18) that the filter J/(u, v) aflects only the numerators of both 7y
and ny. Thus all all-pass filters (e.g., POF, BPOF, etc.) yield the same maximal 5. However the
numerator of eq. (18) is maximized (under the constraint [H(w,v)[ < 1) by the POF in eq. (3). Thus
73 appears to be the more appropriate light efficiency measure to use.

Several other desirable attributes of correlation filters are more difficult to quantify. One of these is
the ability of the filters to locate the correlation peaks accurately. Even when there is no input noise.
we cannot be sure that a centered input leads to a correlation peak at the origin unless the phase of the
input FT is completely cancelled by the plase of the filter. Such complete phase cancellation occurs with
CMF 4nd POF and not with BPOFs. Thus we cannot be sure that the correlation peaks are correctly
located when we use BPOFs. Wlen the input is corrupted by noise, the peak locations get affected
and the variance in the peak or Peak Location Error (PLE) is a descriptive measure. Recently, Vijaya

Kumar et. al.?” showed that the CMF minimizes the PLE and in that sense is the best filter for locating
references in an input.

Another desirable feature for a correlation filter is that it should yield large correlation outputs with
a “desired” class of images and small outputs with all others. Filters designed to maximize SNR in eq.
(10) are very good at detecting an object in noise, but they may not be good at discriminating one class
from another. Thus a measure of the discrimination capability such as Fisher Ratio?® must be employed.

Filters such as SDFs are designed to provide distortion invariance. Thus a measure for the distortion

sensitivity must be used. Since ¢(0,0) is usually considered in detecting an object, the following measure
for distortion sensitivity may prove useful.

Ic(OaO)lmar - IC(O)O)Imin
DS = 3 19
|C(0, O)Imar + lC(O, O)Imin ( )

where the subscripts “max” and “min” refer to maximum and minimum |c(0, 0)} values obtained among
all possible distorted inputs. When |¢(0,0)| is the same for all distorted images, the distortion sensitivity
(DS) is zero. When {¢(0,0)|min = 0, then DS achieves its highest (worst) value of one. Thus a distortion-
invariant filter tries to force DS to zero. Of course, the DS value obtained depends very much on what

we mean by the “Distortion Set”™. When the set of distortions span a small range, it is easier to achieve
DS values close to zero.




There may be other important considerations such as the complexity of implementation, dyvuamic
range requirements, space bandwidth product requirements. ete. that we need to speci{v. But for evalu-
ating correlation filter designs, the measures we have inttoduced should prove to be adequate,

4 Optimal Trade-off Filters

Recently, Refregier” introduced Optimal Trade-off Filters (OTFs) which are the subject of this section.
In this approach, filters are designed to optimally tradeoff three performance measures, namely: the SNR,
the PCE and the modified Horner efficiency 1};. The OTFs are optimal in the sense that when two of

these measures are held constant, the OTFs yield the best value for the third measure among all possible
filters.

To understand the theory of OTFs, let us rewrite the three performance mecasures as below.

pJ .12
snp = APeakl (20)
Variance
. |Peak|? )
C | = AL 21
pet Output Energy (21)
and )
, |Peak| 5
_ 22
R Input Energy’ (22)
where
Peak = / S(u,v) H"(u,v)dudv, (23)
Variance = // Po(u,v)|H(u,v)]?dudv, (24)
Output Energy = //lS(u,v)PlH(u,u)l?du dv, (25)
and
Input Energy = //|S(u, v)|? du dv. (26)

Suppose that we want to maintain PCE and 5}, at specified levels and maximize the SNR. Since the
input energy cannot be controlled by the filter H(u,v), maintaining 7j; in eq. (22) at a specified value
implies keeping |Peak| in eq. (23) at a constant value. Since |Peak]| is a constant, maintaining PCE in
eq. (21) at a specified value is equivalent to keeping the output energy in eq. (25) a constant. Finally,
since |Peak| is a constant, maximizing the SNR in eq. (20) is equivalent to minimizing the variance in
eq. (24). Then the OTF H(u,v) can be obtained by minimizing the variance in eq. (24) while holding

the |Peak| in eq. (23) and the output energy in eq. (25) at constant values. Refregier’ goes on to show
that this minimization leads to the follo.-ing filter.

o S(u,v)
= o S s @7)

where the function 0,{-} is defined as

My i 1/
oy} = { e if :z:flfz\ (28)
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where 4 = fyle?¥ and 0 < 0 < | and A > 0 are design parameters. As can be seen from eq. (27).
(jr = 1,4 = 0) leads to the CMEP whereas (o = 0,4 = 0) leads to the inverse filter. The CMI maximizes
noise tolerance whereas the inverse filter (117) yields the sharpest correlation peaks. Intermediate values
of je lead to filters that compronise between the two extremes. The parameter A is used to indicate the
importance of light effeciency yj,. When Ais close to zero, or{y} of eq. (28) is essentially proportional to
y whercas when ) is Jarge, 0x{y} is essentially the phase-only version of y. Thus large A values indicate
that the light efficiency is important.

In Fig. 2, we redraw a figure from Refregier” to illustrate these tradeoffs graphically. For A = 0, we
obtain the tradeoff between PCE and SNR with the CMF and IF at the extremes of the curve. As A
approaches infinity, we get a POF with worse (i.e., lower) values for both PCE and SNR. Other filters
such as BPOFs will have even lower SNR values for the same PCE value. Of course this tradeofl curve
will change as we go to a different image.

/IF (1=0)

PCE ——————»

SNR >

Figure 2: Graphical illusiration of the tradeoffls among SNR, PCE and 5}, (Adapted from [7]).

5 Fractional Power Filters

Recently, there has been a growing interest?® in the use of nonlinearities in the frequency plane of a
correlator. With the help of a particular class of nonlinearly recorded matched filters, we illustrate in
this section the tradeoffs inherent in such a filter design. We refer to this class of filters as Fractional
Power Filters??2 (FPFs).

it |S(u,v)] = (29)

p
Hepr(u,v) = { (18 lPezplfle, 0] 15(u0)1 £ 0
where 8(u, v) is the phase associated with S(u,v) and where p is the power associated with the FPF. It
is easy to see that fppr(u,v) specializes to the IF, POF and CMF for p = —1,0 and + 1, respectively.
Since the phase of Hppr(u,v) is 8(u,v) for all p, the filter phase completely cancels (when there is no
input noise) the phase of the input FT thus ensuring that the resulting correlation peak is at the origin.
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Allowing p to tiake on values other than -1 0 and 4 1 leads to the notion of TP Fs wiidh emplov nonlineas

functions of the magnitnde of the sipnal 1]
Substituting Hpppe(u, w) in the SNIUdelinition in eq. (11), we pet

1S, )P du (1(‘]:“
- ]f P, v) [S(w,0)|?r du dv’

SNRppp = (30)

For the case of white noise, P (u,v) = N, and SN Rppp in eq. (30) is maximized by p = 1 (the CMP).
The PCE of FPI' can be obtained by substituting eq. (29) in eq. (14).

_ UT 1S (u, v)|P+! du dv)?

PCEppp = ) 3]
krr {15 (u, v)2p+) du dv (31)
Once again, PCEppg is maximized by p = —1, the IF. Similarly, the Horner light efliciency 5y of the
FPFs can be obtained by substituting eq. (29) in eq. (17).
Y ) 2(p+1)
_6ff|.5(u,1)] dudv (32)

= I 1S(u, )2 du de

Here the constant § is chosen to ensure that the FPF under consideration (see eq. (29)) has a maximum
transmittance of one. The Horner efficiency in eq. (32) is easily related to 7}, and maximizing one is
equivalent to maximizing the other.

To illustrate the tradeofl resulting from varying p in FPF design, we show in Fig. 3 how the 3
performance measures (SNR, PCE and 5y) vary as a function of p for the aircraft image shown in Fig.
4. We have allowed p to vary between -2 and +2. We see that SNR increases with p until p = +1 (the
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Figure 3: Variation in SNR, PCE and 5y as a function of the fractional power p for the aircraft image.

CMF) and then decreases afterwards. The PCE reaches its maximal value for p = —1 (the IF). The
light efficiency ny attains its maximum for p = 0 (the POF). It is obvious from the curves in Fig. 3 that
while the nonlinearity may help improve one measure, it may hurt the other. For this image, the POF
(i.e., p = 0) appears to be the best coinpromise in the sense that it yields only 6 dB less in both SNR
and PCE from their optimum values. This type of numerical analysis was carried out?? with two other
images with essentially the same conclusions.
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Figure 4: Aircraft (MIG) image used in numerical experiments.

6 Tradeoff by Region of Support Selection

The POF and the BPOF are allpass, i.e., they have a magnitude response of one at all frequencies.
This causes the POF and the BPOF to be extremely sensitive to noise in the input3. This allpass
nature also causes them to become very sensitive to minor distortions in the input. One method to
alleviate these problems is to force the filter magnitude response at some spatial frequencies to zero. For
POFs, this may be accomplished using a binary (opaque/transmissive) mask next to the conventional
POF. When using 2 MOSLM, Kast et. al.3! have shown we can achieve 3 levels of transmittance (+1,
0 and -1). Thus the MOSLMs can be used to implement 2 BPOF with some spatial frequencies set to
have zero magnitudes. The set of frequencies for which |H (u, v)| # 0 is known as the Region of Support
(ROS). The selection of a proper ROS is critical and Vijaya Kumar and Bahri showed how the ROS
can be selected to maximize the SNR for POFs® and BPOFs®. More recently, Vijaya Kumar et. al.3?
showed how the ROS can be selected to maximize the PCE for POFs, BPOFs and Complex Ternary
Matched Filters (CTMFs). In this section, we will demonstrate how the ROS can be selected to tradeoff
among the various measures. We will focus our attention on the design of BPOFs. In particular, we will
consider the tradeoff between the SNR and PCE. Note from eqs. (11) and (14) that the two measures
have the same numerator but different denominators. This leads to the following empirical compromise
performance measure (CPM) that combines the denominators of SNR and PCE using a weighting factor
7, ie.,

| ff S(u,v) H*(u,v) dudy]? (33
IV H (10, 9)2 [ Pa(u, v) + 7S (1, v)|?] dudv’ )

where 7 is a positive constant to be specified by the designer. As vy — 0, CPM — SNR and as vy — oo,
CPM — (PCE/7) so that at the two extreme values, we get filters that maximize the SNR and the PCE.
At intermediate v values, we get filters that compromise between the two extremes.

CPM =

Let us now consider BPOFs with a region of support R, i.e.,

_ )} *1 for(u,v)€ R
H(u,v) = { 0  otherwise : (34)

Thus the design of these filters consists of two tasks. One task is to choose R and the second task is
to decide whether H(u,v)is +1 or -1 at frequencies (u,v) in R. Farn and Goodman?? have shown that
the optimal method for deciding whether H(u,v) is +1 or -1 is to use a Threshold line aui'gle33 (TLA)
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Figure 5: Thresliold line angle needed for optical binary phase-only filter.

@ as shown in Fig. 5. If the signal FT S(u,v) is on one side of this line, we choose If(u,v) = +1 and
otherwise, we choose /{(u,v) = —1. For § = 0, If(u,v) is obtained by binarizing the real part of S(u,v)
whereas for 8 = % /2, it is obtained by binarizing the imaginary part of S(u,v).

The best angle 8 is not known a priori and must be determined by a scarch. However, once a particular
8 is selected, the ROS leading to the highest CPM can be shown3* to be of the following form.

Senr(u,v) .
Pl )+ 7S o) 2 1) (33)

R = {(u,v):
where T is a threshold to be determined by search and where
Ser(u,v) = Sp(u,v)cosé + Sy(u,v)siné, (36)

with Sp(u,v) and Sy(u,v) being the real part and the imaginary part, respectively, of S(u,v). Hendrix
et. al.3 go on to show how ROSs can be designed to tradeoff SNR versus 7}, and PCE versus ny-

Flannery and Phillips3® call the BPOFs with a region of support as Ternary Phase-Amplitude Filters
(TPAFs) and discuss design tradeoffs in these filters.

To illustrate the tradeoff resulting from the ROS selection, we include here some simulation results
obtained using the ROS in eq. (35). We use the boundary image of the truck shown in Fig. 6. We
designed Optimal-CPM BPOFs assuming that the background noise is white, i.e., P,(u, v) is a constant.
In Fig. 7 we show a graph depicting how SNR and PCE vary as we vary the 7 in our BPOF design.
The lower right corner corresponds to 4 = 0 (or maximum SNR) and the upper left corner uses a large

value of 7 (or maximum PCE). Intermediate values of ¥ show how SNR can be traded off for PCE and
vice-versa.

We have shown elsewhere®® that as v is increased, the area of ROS increases and the resulting

correlation peak is sharper. However at the same time, the noise sensitivity of the BPOF increases
because the ROS starts passing higher frequencies through.
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Figure G: Binary, boundary image of a truck [34].
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Figure 7: PCE vs. SNR as 7 is varied (34].




7 Input Noise vs. Detector Noise

Much research has been carried out iu correlation filter design in maximizing the tolerance 1o noise in
the input plane. An often ignored reality is that detectors used in the correlation plane introduce noise
in the detected correlation peak value and hence degrade the resulting performance. In fact, if detector
noise was absent, we could design correlation filters without worrying about their light efliciency. The
main reason Lo desire a large 3y is to ensure that the correlation plane detector receives enough light to
overcome the noise introduced in the detector. The usual procedure of maximizing the SNR (as defined
in eq. (10)) ignores this important detector noisc. In this section, we demonstrate that the correlation
filter design provides a method for trading off tolerance to input noise against tolerance to detector noise.
To illustrate this, we start with a very simple model for the detected output y.

y = ¢(0,0) + ng, (37)

where ¢(0,0) is the correlation output in the absence of noise and n, is a2 random variable describing
the detector noise. We model 1y as a random variable with mean uq and variance 03. Let Hp and H,
denote the two detection hypotheses, i.c., Hg denotes “signal absent™ and H; denotes “signal present”.
Then an appropriate SNR measure is the following,.

oo |B{y/lh) - E{y/Ho)P
SNRa = slVar{y/Ili\} + Var{y/Ho}]

(3%)

where the subscript d is used to denote the fact that we are including the detector noise. Bahri®¢ showed
that this SNRy can be rewritten in terins of the filter //(u,v) as below.

| {f S(u,v) H*(u,v)dudov|?
o2+ [f Pa(u,v)|H(u,v)|?dudv’

SNRq = (39)
This SNRg measure is very similar to the SNR measure in eq. (11) with the only difference being the
extra o] term in the denominator. When the detector noise is very low, SNRy4 = SNR and the usual SNR
maximization is carried out. When the detector noise a3 is large, then SNRy in eq. (39) is proportional
to |E{c(0,0)})2 and we need to maximize the numerator in eq. (39) to maximize SNRy. The numerator
in eq. (39) is maximized by Phase-only filters. Thus, when the detector noise dominates, Phase-only
filters (with their 100% light throughput) are optimal. For intermediate situations, SNRy in eq. (39)
must be maximized. Recently, Vijaya Kumar et. al.37 have shown that the maximization of SNRy in eq.

(39)-subject to the constraint that | H(u,v)] < 1 leads to Saturated Filters. Saturated Filters will also
be discussed in another paper3® in this critical review.

Bahri3¢ determined the ROSs that maximize the SNR, in eq. (39). "We show in Fig. 8 the 32 x 32
tank image used in Bahri's simulations. The ROSs obtained for this image are shown in Fig. 9. The
input noise spectrum P,(u, v) is assumed to be a constant at N,. In Fig. 9a, we show the optimal region
of support when o3/N, < 1. Dark regions in this figure indicate where H(u,v) = 0 and white regions
indicate where | H(u,v)} = 1. The (0,0) frequency corresponds to the center of the square. As expected,
the input noise dominates and the ROS is concentrated around low spatial frequencies so that the strong
signal components are allowed through while blocking high frequencies that have mostly noise energy.
In Fig. 9b, we show the optimal ROS when 63/N, = 1. Here the ROS has more high frequencies than in
Fig. 9a. Finally, in Fig. 9c, we show the Optimal ROS for the case when 03/N, > 1. Here the detector
noise dominates and the ROS is opened all the way to allow as much of the input light as possible.




Figure $: The 32 x 32 tank image used in ROS determination {36).

(a) 03/N, <« 1 (bya3/N, =1 (c)o3/N, > 1

Figure 9: Optimal region of support for various combinations of input and detector noise levels {36].
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8 Tradeoft in Composite Filter Design

As discussed in Section 2, one of the methods proposed to overcome the distortion sensitivity of (e
matched filters is the SDF method. In SDF, the filter is made from a composite image h{x, y) that is the
weighted sum of N training images sy(2,y),...,sn(x,y) as in ¢q. (6). We know that the CME vields
the highest SNR among all filters. Thus, we must be trading off the noise tolerance in order 1o obtain

distortion tolerance as we go from CMI's to SDI's. In this section, we will illustrate this tradeofl more
quantitatively.

To illustrate this tradeofl, we consider only in-plane rotation distortion. Let the N training images
be obtained by rotating the original image s(z,y) in increments of 2x/N radians. Assume that the
input image is a rotated version of s(z,y) that is corrupted by zero-mean, additive, white noise. Vijaya
Kumar and Pochapsky3® analyzed how the resulting SNR (defined in eq. (10)) varies as a function of
input image space bandwidth product (SBWP), input SNR, the number of training images N wad the
distortion in the input image. They approached this by modeling s(z,y) as a sample realization from
a random process with a specified Autocorrelation function®. Vijaya Kumar and Pochapsky®? used

Gaussian-shaped autocorrelation functions (ACFs) as well as exponential-shaped ACFs and obtained
similar results. '

We show in Fig. 10 the output Signal-to-Noise Ratio (SNR) as a function of input distortion for three
different choices of N (1, 12 and 72). The input image s(z,y) has a space bandwidth product of 1000
and the input SNR was such that the output SNR for the CMF is 10 dB when the input is not distorted.
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Figure 10: Output SNR as a function of input rotation for different N values. Input image SBWP is
1000 [39).

In this figure, the curve corresponding to one training image shows how the output SNR is affected
by in-plane rotation. For no in-plane rotation, the output SNR is 10 dB and it steadily decreases with
increasing rotation and becomes as low as -60 dB when the rotation is 180°. The in-plane rotation shown
in Fig. 10 is from 0° to 180° only because the remaining rotations can be determined from symmetry.




This curve for “1 training image” clearly demonstrates the distortion sensitivity of the CMI.

In this same figure, we show the output SNR as a function of input rotation for the same image, but
using SDFs designed with 12 and 72 training images. When N = 12 is used, the output SNR is onlv
0 dB when the input is undistorted. Similarly, the output SNR is 0 dBB when the input is rotated by
multiples of 30° (corresponding to onc of the 12 training images used). The output SNR reaches its
minimum (approximately -30 dB) at 15°,45°,75°,...,345°. Thus, by using N = 12, we improve the

worst-case output SNR (from -70 dB for the CMF to -30 dB for the SDF using N = 12) while degrading
the best-case output SNR (from 10 dB for the CMF to 0 dB for the SDF using N = 12). When the
number of training images used is increased to N = 72, both the best-case and the worst-case output

SNRs converge to the value of -10 dB. Any further increase in N is unnecessary since it would not affect
the output SNR significantly.

The results in Fig. 10 correspond to an image s(z,y) with SBWP = 1000. Vijaya Kumar and
Pochapsky®?illustrate how output SNR curves are affected by increasing the input SBWP. Itisinteresting
to note that for N = 1, the output SNR is higher (for no input distortion) when the input SBWP is
higher. But with input distortion, this falls off more rapidly so that the worst-case SNR is usually lower
for the image with the higher SBWP. Also, it takes a larger N (for higher SBWP image) to reach the
situation where the “best-case” and “worst-case” output SNRs are equal.

Another interesting result that came out of this analysis is the potential danger of using a high
SBWP image when N is small. In Fig. 11, we show the worst-case SNR as a function of N for three
different input SBWPs. For the smallest SBWP (i.e., 100), the worst-case output SNR levels off for

| LINILINE SHR: SBVE = 0000 ot ceee-

Sswp = 1009
LIBITING SNRe SBWR = 100 o emceaoae feccciazac MM SBWP = 100

SgwP = 10000

(d8)

WORST-CASE SNR
-40 =30

-S0

NUMBER OF TRAINING SET I1MAGES
Figure 11: Worst-case output SNR as a function of the number of training images [39].

N > 25. However, if we use N = 25 for an image with SBWP = 10000, the resulting worst-case SNR
is significantly lower than that with SBWP = 100 and N = 25. Thus, when the number of available
training images is limited, it pays to reduce the SBWP of the input images deliberately. In fact, in Fig.
12, we show the optimum SBWP as a function of N, the number of training images. It is gratifying to see

that essentially the same curve was obtained for both the Gaussian-shaped and the exponential-shaped
ACFs.
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Figure 12: Optimum SBWVP as a function of the number of training images {39].

9 Optimal Tradeoff Composite Filters

In Section 4, we discussed OTFs which optimally tradeoff PCE, SNR and light efficiency. In this
section, we review some of the recent work by Refregier and Figue!? in extending the idea of tradeoffs
to composite filter design. To introduce this work, we need to introduce vector notzlion.

Suppose each of the N training images s,(z,v),s2(z,¥),-..,Sn(Z,y) can be represented by arrays
with d pixels in them. Then we can denote these training images by d-dimensional column vectors
$1,82, .. SN. Similarly, the filter i(z, y) can be denoted by the d-dimensional column vector h. Then the
SDF constraints in eq. (7) can be rewritten as

Th=¢, i=1,2,...,N, (40)

where the superscript T denotes the transpose. Eq. (40) represents N linear equations in d variables

(i.e., h). Since d > N, there are many degrees of freedom available (to optimize other measures) while
solving eq. (40).

As discussed in Section 2, the basic SDF approach assumes that hA(z,y) is a linear combination of the
training images (sec eq. (6)) and thus throws away all available degrees of freedom. One problem with the
basic SDF is its noise sensitivity. Vijaya Kumar!? proposed the minimum variance SDF (MVSDF) that
uses the additional degrees of freedom to maximize the noise tolerance while satisfying the equations in
(40). Another method to take advantage of these additional degrees of freedom is the minimum average
correlation energy (MACE) filter developed by Mahalanobis et. al.2%. Refregier and Figue!? showed how
the two types of filters can be accommodated in a single design.

Suppose the input image is one of the training images corrupted by additive, white noise. Then the
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. : . . o
variance g of the correlation output iv given byl

)

ac - ,.'\'”l/l]‘/l, ril

where Ny is the level of the input neise. Minimizing 0 in eq. (41) subject Lo the constraints i eq. ()
leads to

Ingvsor = S(ST8) e, L

where S contaius the N training vectors as its N colummns, i.e.,

:S_‘: [ﬁlvf?v"'v.‘sf\’} (1‘3)

and ¢ is a column vector with the N output constraint values in it, i.e.,

oy

£:[gl$£2""agN]’I' (44)

With this notation, the N equation< in eq. (40) can be written more compactly as

sTh=ec (45)

It is easy to verify that the MVSDE in eq. (42) satisfies the constraint in eq. (45).

While the MVSDF maximizes the noise tolerance, it does nothing to reduce the false peak problem.
The false sidelobe/peak problem is attacked by the MACE filter?® which minimizes the average energy in

the correlation plane while satisfying the constraints in eq. (45). The MACE filter is most easily derived
in the frequency domain.

Let h, 5 and S denote the frequency-domain counterparts of h, s; and S. Then eq. (45) can be
rewritten as

$th=c (46)

where we have ignored some constants. The superscript * denotes conjugate transpose. The average
correlation plane energy Eq,4 is as below.

1 N
Eeug = 7\;;//IH(u,v)IzlS.-(u,v)Pdudv
/ / \H (u, )[2 Po(, v) dudv (47)

where the average signal spectrum is given by

N
Py(u,v) = %Zw,’(u,v)l?. (48)
=1

The average correlation plane energy E,ug in eq. (47) can be rewritten in matrix/vector notation as
-~ + - -
Eaug =h Dh (49)

where [ is a d x d diagonal matrix whose entries are given by P,(u, v) defined in eq. (48). The MACE

filter is obtained by minimizing E, g in eq. (49) while satisfying the constraints in eq. (46). The resulting
MACE filter is given?® by

hasace = _D.—IS(S+_Q_IS)—1£- (50)
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The matrix 1) is diagonal and is easily inverted. It is easy to verify that the filter in eq. (50) satisfies
the SDI constraints in eq. (16).

Sudharsanan et al*' cugrested a space domain method to design compromise composite filters. In

. . - Yy - - . 5 - N 2

space domain, the matrix equivalent of 1) is not diagonal and is not convenient. Refregier and Pigue'”
showed thau the Optimal Tradeofl Composite Filter (OTCYF) is given as follows.

horcr = E;iﬁ(ﬁ+ﬁ;lﬁ)-1£- (51)
where the diagonal matrix [j,, of size dxd is given by
B,=pD+(1-pl, (52)

where 0 < g < 1 is a design parameter and P, is the diagonal matrix with the input noise spectral
density values.

When ;1 = 0, the OTCF reverts to MVSDF and when g = 1, we obtain the MACE filter. For
intermediate g values, we get a compromise filter. Refregier and Figue!? tested these filters numerically
using an image database of 20 trucks and 20 tanks. In Fig. 13, we reproduce the curve from Reference 12
that shows how o2 of eq. (41) (termed the Mean Square Error) and Eg,, of eq. (49) (termed the average
correlation energy) vary as y is varied. The inside box shows the curve in a log scale. Note that both
MVSDF and MACE represent rather poor choices since we can improve either of the two performance
measures by sacrificing the other by small amounts.
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Figure 13: Mean Square Error as a function of the average correlation plane energy for the image
database of 20 tanks and 20 trucks [12].

Refregier and Figue!? make the interesting observation that filters (such as MVSDF) that maximize
the noise tolerance appear to be tolerant to distortions, but discriminate poorly. On the other hand,
filters (such as MACE) that maximize the peak sharpness tend to discriminate well, but are unacceptably
sensitive to even minor distortions. The OTCF's discussed in this section provide a controlled approach to




achieving an acceptable compromise between the two extremes. Refregier'! suggested a similar optimal
tradeofl scheme for desiguing cirenlar harmonic filters.

10 Conclusions

The objective of this paper is to illustrate the fact that we are always trading off one performance
measure against another in correlation filter design. We have discussed the following in order to reinforce
this concept.

¢ Optimal tradeoff filters (OTFs) where we trade off SNR, PCE and #},.

o Fractional power filters (FPFs) where we trade off among the three measures by using different
powers.

¢ Region of support (ROS) selection in POI's and BPOF's to trade off SNR and PCE.
e ROS selection to trade off tolerance to input noise for tolerance to detector noise.

e Trading off of the best-case SNR for improved worst-case SNR in designing synthetic discriminant
functions (SDFs).

e Optimal tradeofl composite filters (OTCFs) that provide the best compromise between M ACE and
MVSDF approaches.

It is our hope that the above illusirations will dispel any illusions that filter design schemes exist that
are the “best” in all categories. As expected, we must give up in one measure to gain the other. This
does not, however, imply that we can randomly choose a filter and use it. Finding a filter that gives the

best compromise between two extremes is still a nontrivial task and research into compromise composite
filters must be rigorously pursued.
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